These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32710516)

  • 21. Anisotropic neural deblurring for MRI acceleration.
    Mayberg M; Green M; Vasserman M; Raichman D; Belenky E; Wolf M; Shrot S; Kiryati N; Konen E; Mayer A
    Int J Comput Assist Radiol Surg; 2022 Feb; 17(2):315-327. PubMed ID: 34859362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction.
    Njeh I; Mzoughi H; Ben Slima M; Ben Hamida A; Mhiri C; Ben Mahfoudh K
    Med Biol Eng Comput; 2021 Jan; 59(1):85-106. PubMed ID: 33231848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noise-Adaptive Non-Blind Image Deblurring.
    Slutsky M
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications.
    Cole E; Cheng J; Pauly J; Vasanawala S
    Magn Reson Med; 2021 Aug; 86(2):1093-1109. PubMed ID: 33724507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network.
    Sommer K; Saalbach A; Brosch T; Hall C; Cross NM; Andre JB
    AJNR Am J Neuroradiol; 2020 Mar; 41(3):416-423. PubMed ID: 32054615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of k-space energy spectrum analysis for inherent and dynamic B0 mapping and deblurring in spiral imaging.
    Truong TK; Chen NK; Song AW
    Magn Reson Med; 2010 Oct; 64(4):1121-7. PubMed ID: 20564589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MaxGIRF: Image reconstruction incorporating concomitant field and gradient impulse response function effects.
    Lee NG; Ramasawmy R; Lim Y; Campbell-Washburn AE; Nayak KS
    Magn Reson Med; 2022 Aug; 88(2):691-710. PubMed ID: 35445768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain tumor segmentation using holistically nested neural networks in MRI images.
    Zhuge Y; Krauze AV; Ning H; Cheng JY; Arora BC; Camphausen K; Miller RW
    Med Phys; 2017 Oct; 44(10):5234-5243. PubMed ID: 28736864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semiautomatic off-resonance correction in spiral imaging.
    Chen W; Meyer CH
    Magn Reson Med; 2008 May; 59(5):1212-9. PubMed ID: 18429033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iterative reconstruction of single-shot spiral MRI with off resonance.
    Harshbarger TB; Twieg DB
    IEEE Trans Med Imaging; 1999 Mar; 18(3):196-205. PubMed ID: 10363698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging.
    Akçakaya M; Moeller S; Weingärtner S; Uğurbil K
    Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correction of out-of-FOV motion artifacts using convolutional neural network.
    Wang C; Liang Y; Wu Y; Zhao S; Du YP
    Magn Reson Imaging; 2020 Sep; 71():93-102. PubMed ID: 32464243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation.
    Kim B; Shim H; Baek J
    Med Phys; 2022 Dec; 49(12):7497-7515. PubMed ID: 35880806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deblurring for non-2D Fourier transform magnetic resonance imaging.
    Noll DC; Pauly JM; Meyer CH; Nishimura DG; Macovski A
    Magn Reson Med; 1992 Jun; 25(2):319-33. PubMed ID: 1614315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data-driven synthetic MRI FLAIR artifact correction via deep neural network.
    Ryu K; Nam Y; Gho SM; Jang J; Lee HJ; Cha J; Baek HJ; Park J; Kim DH
    J Magn Reson Imaging; 2019 Nov; 50(5):1413-1423. PubMed ID: 30884007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.