These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32710567)

  • 21. Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury.
    Peng SX; Yao L; Cui C; Zhao HD; Liu CJ; Li YH; Wang LF; Huang SB; Shen YQ
    Neuroscience; 2017 May; 351():36-46. PubMed ID: 28347780
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced Neuroinflammation Via Astrocytes and Neutrophils Promotes Regeneration After Spinal Cord Injury in Neonatal Mice.
    Kitade K; Kobayakawa K; Saiwai H; Matsumoto Y; Kawaguchi K; Iida K; Kijima K; Iura H; Tamaru T; Haruta Y; Ono G; Konno D; Maeda T; Okada S; Nakashima K; Nakashima Y
    J Neurotrauma; 2023 Dec; 40(23-24):2566-2579. PubMed ID: 37503626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prolonged Myocardial Regenerative Capacity in Neonatal Opossum.
    Nishiyama C; Saito Y; Sakaguchi A; Kaneko M; Kiyonari H; Xu Y; Arima Y; Uosaki H; Kimura W
    Circulation; 2022 Jul; 146(2):125-139. PubMed ID: 35616010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules.
    Varga ZM; Bandtlow CE; Erulkar SD; Schwab ME; Nicholls JG
    Eur J Neurosci; 1995 Oct; 7(10):2119-29. PubMed ID: 8542069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome profile of rat genes in injured spinal cord at different stages by RNA-sequencing.
    Shi LL; Zhang N; Xie XM; Chen YJ; Wang R; Shen L; Zhou JS; Hu JG; Lü HZ
    BMC Genomics; 2017 Feb; 18(1):173. PubMed ID: 28201982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability.
    Lange S; Gögel S; Leung KY; Vernay B; Nicholas AP; Causey CP; Thompson PR; Greene ND; Ferretti P
    Dev Biol; 2011 Jul; 355(2):205-14. PubMed ID: 21539830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The early development of major projections from caudal levels of the spinal cord to the brainstem and cerebellum in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Qin YQ; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1993 Sep; 75(1):75-90. PubMed ID: 7693371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BDNF is expressed at the crush site after spinal cord lesion in newborn opossum (Monodelphis domestica).
    Vischer HA
    Eur J Neurosci; 1997 Sep; 9(9):1993-7. PubMed ID: 9383223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmentally regulated markers in the postnatal cervical spinal cord of the opossum Monodelphis domestica.
    Breckenridge LJ; Sommer IU; Blackshaw SE
    Brain Res Dev Brain Res; 1997 Oct; 103(1):47-57. PubMed ID: 9370059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upregulation of the HLH Id gene family in neural progenitors and glial cells of the rat spinal cord following contusion injury.
    Tzeng SF; Bresnahan JC; Beattie MS; de Vellis J
    J Neurosci Res; 2001 Dec; 66(6):1161-72. PubMed ID: 11746449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages.
    Lee-Liu D; Moreno M; Almonacid LI; Tapia VS; Muñoz R; von Marées J; Gaete M; Melo F; Larraín J
    Neural Dev; 2014 May; 9():12. PubMed ID: 24885550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of spinal cord in the isolated CNS of a neonatal mammal (the opossum Monodelphis domestica) maintained in longterm culture.
    Møllgård K; Balslev Y; Janas MS; Treherne JM; Saunders NR; Nichols JG
    J Neurocytol; 1994 Mar; 23(3):151-65. PubMed ID: 8006676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The vestibular primary afferents and the vestibulospinal projections in the developing and adult opossum, Monodelphis domestica.
    Pflieger JF; Cabana T
    Anat Embryol (Berl); 1996 Jul; 194(1):75-88. PubMed ID: 8800425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic Changes Associated with Pregnancy in a Marsupial, the Gray Short-Tailed Opossum Monodelphis domestica.
    Hansen VL; Schilkey FD; Miller RD
    PLoS One; 2016; 11(9):e0161608. PubMed ID: 27598793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-translational regulation of Crmp in developing and regenerating chick spinal cord.
    Gögel S; Lange S; Leung KY; Greene ND; Ferretti P
    Dev Neurobiol; 2010 May; 70(6):456-71. PubMed ID: 20162635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. cDNA microarray analysis of spinal cord injury and regeneration related genes in rat.
    Xiao L; Ma ZL; Li X; Lin QX; Que HP; Liu SJ
    Sheng Li Xue Bao; 2005 Dec; 57(6):705-13. PubMed ID: 16344894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.