BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 32710622)

  • 41. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package.
    Meng J; Lu Z; Liu H; Zhang L; Zhang S; Chen Y; Rao MK; Huang Y
    Methods; 2014 Oct; 69(3):274-81. PubMed ID: 24979058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptome-Wide Analysis of mRNA Adenylation Status in Yeast Using Nanopore Sequencing.
    Krawczyk PS; Tudek A; Mroczek S; Dziembowski A
    Methods Mol Biol; 2024; 2723():193-214. PubMed ID: 37824072
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The N
    Dorn LE; Lasman L; Chen J; Xu X; Hund TJ; Medvedovic M; Hanna JH; van Berlo JH; Accornero F
    Circulation; 2019 Jan; 139(4):533-545. PubMed ID: 30586742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data.
    Sun WJ; Li JH; Liu S; Wu J; Zhou H; Qu LH; Yang JH
    Nucleic Acids Res; 2016 Jan; 44(D1):D259-65. PubMed ID: 26464443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation.
    Aw JG; Shen Y; Wilm A; Sun M; Lim XN; Boon KL; Tapsin S; Chan YS; Tan CP; Sim AY; Zhang T; Susanto TT; Fu Z; Nagarajan N; Wan Y
    Mol Cell; 2016 May; 62(4):603-17. PubMed ID: 27184079
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs.
    Legrand C; Tuorto F; Hartmann M; Liebers R; Jacob D; Helm M; Lyko F
    Genome Res; 2017 Sep; 27(9):1589-1596. PubMed ID: 28684555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of nucleotide modifications in the yeast mitochondrial ribosome.
    Sirum-Connolly K; Mason TL
    Nucleic Acids Symp Ser; 1995; (33):73-5. PubMed ID: 8643404
    [TBL] [Abstract][Full Text] [Related]  

  • 48. iMethyl-Deep: N6 Methyladenosine Identification of Yeast Genome with Automatic Feature Extraction Technique by Using Deep Learning Algorithm.
    Mahmoudi O; Wahab A; Chong KT
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32397453
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Yeast precursor ribosomal RNA. Molecular cloning and probing the higher-order structure of the internal transcribed spacer I by kethoxal and dimethylsulfate modification.
    Thweatt R; Lee JC
    J Mol Biol; 1990 Jan; 211(2):305-20. PubMed ID: 2407850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping of the 13 pseudouridine residues in Saccharomyces cerevisiae small subunit ribosomal RNA to nucleotide resolution.
    Bakin A; Ofengand J
    Nucleic Acids Res; 1995 Aug; 23(16):3290-4. PubMed ID: 7545286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accurate characterization of
    Wang J; Toffano-Nioche C; Lorieux F; Gautheret D; Lehmann J
    RNA Biol; 2021 Jan; 18(1):33-46. PubMed ID: 32618488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HAMR: high-throughput annotation of modified ribonucleotides.
    Ryvkin P; Leung YY; Silverman IM; Childress M; Valladares O; Dragomir I; Gregory BD; Wang LS
    RNA; 2013 Dec; 19(12):1684-92. PubMed ID: 24149843
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relaxed mutant of Saccharomyces cerevisiae: proper maturation of ribosomal RNA in absence of protein synthesis.
    Waltschewa L; Georgiev O; Venkov P
    Cell; 1983 May; 33(1):221-30. PubMed ID: 6380752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology.
    Zhang Y; Jiang J; Ma J; Wei Z; Wang Y; Song B; Meng J; Jia G; de Magalhães JP; Rigden DJ; Hang D; Chen K
    Nucleic Acids Res; 2023 Jan; 51(D1):D106-D116. PubMed ID: 36382409
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.
    Lovejoy AF; Riordan DP; Brown PO
    PLoS One; 2014; 9(10):e110799. PubMed ID: 25353621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of transcriptional initiation of yeast mitochondrial DNA in a homologous in vitro transcription system.
    Edwards JC; Levens D; Rabinowitz M
    Cell; 1982 Dec; 31(2 Pt 1):337-46. PubMed ID: 6760988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of tools for long read RNA-seq splice-aware alignment.
    Križanovic K; Echchiki A; Roux J; Šikic M
    Bioinformatics; 2018 Mar; 34(5):748-754. PubMed ID: 29069314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational methods for RNA modification detection from nanopore direct RNA sequencing data.
    Furlan M; Delgado-Tejedor A; Mulroney L; Pelizzola M; Novoa EM; Leonardi T
    RNA Biol; 2021 Oct; 18(sup1):31-40. PubMed ID: 34559589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.
    Rouskin S; Zubradt M; Washietl S; Kellis M; Weissman JS
    Nature; 2014 Jan; 505(7485):701-5. PubMed ID: 24336214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A systematic approach to RNA-associated motif discovery.
    Gao T; Shu J; Cui J
    BMC Genomics; 2018 Feb; 19(1):146. PubMed ID: 29444662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.