BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32710821)

  • 21. The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs.
    Pietri T; Romano SA; Pérez-Schuster V; Boulanger-Weill J; Candat V; Sumbre G
    Cell Rep; 2017 May; 19(5):939-948. PubMed ID: 28467907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2,4-Dichlorophenoxyacetic acid containing herbicide impairs essential visually guided behaviors of larval fish.
    Dehnert GK; Karasov WH; Wolman MA
    Aquat Toxicol; 2019 Apr; 209():1-12. PubMed ID: 30684730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective processing of all rotational and translational optic flow directions in the zebrafish pretectum and tectum.
    Wang K; Hinz J; Haikala V; Reiff DF; Arrenberg AB
    BMC Biol; 2019 Mar; 17(1):29. PubMed ID: 30925897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Visual system and prey capture behavior of larval zebrafish].
    Li XQ; Du JL
    Yi Chuan; 2013 Apr; 35(4):468-76. PubMed ID: 23659937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of the hypothalamic feeding centre upon visual prey detection.
    Muto A; Lal P; Ailani D; Abe G; Itoh M; Kawakami K
    Nat Commun; 2017 Apr; 8():15029. PubMed ID: 28425439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Zebrafish Visual System: From Circuits to Behavior.
    Bollmann JH
    Annu Rev Vis Sci; 2019 Sep; 5():269-293. PubMed ID: 31525146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum.
    Roeser T; Baier H
    J Neurosci; 2003 May; 23(9):3726-34. PubMed ID: 12736343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana).
    Horowitz SS; Simmons AM
    Brain Behav Evol; 2010; 76(3-4):226-47. PubMed ID: 21266803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Behavioral and physiological consequences of unilateral ablation of the nucleus isthmi in the leopard frog.
    Gruberg ER; Wallace MT; Caine HS; Mote MI
    Brain Behav Evol; 1991; 37(2):92-103. PubMed ID: 2054588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parallel Channels for Motion Feature Extraction in the Pretectum and Tectum of Larval Zebrafish.
    Wang K; Hinz J; Zhang Y; Thiele TR; Arrenberg AB
    Cell Rep; 2020 Jan; 30(2):442-453.e6. PubMed ID: 31940488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial distribution of a fusiform cell in the optic tectum of Pantodon buchholzi, the African butterfly fish (Teleostei, Osteoglossomorpha).
    Saidel WM; Mandau MK; Haynes PT
    Brain Res; 2008 Dec; 1243():63-9. PubMed ID: 18848824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli.
    Roth G
    Exp Brain Res; 1982; 45(3):386-92. PubMed ID: 7067773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cholinergic system in the toad's (Bufo bufo L.) visual system.
    Hock FJ
    Behav Neural Biol; 1983 Jul; 38(2):313-6. PubMed ID: 6416249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of temperature on the proxies of visual detection of
    Babkiewicz E; Bazała M; Urban P; Maszczyk P; Markowska M; Gliwicz ZM
    Biol Open; 2020 Jul; 9(7):. PubMed ID: 32694151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of object size in retinotectal microcircuits.
    Preuss SJ; Trivedi CA; vom Berg-Maurer CM; Ryu S; Bollmann JH
    Curr Biol; 2014 Oct; 24(20):2376-85. PubMed ID: 25242030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prey capture in zebrafish larvae serves as a model to study cognitive functions.
    Muto A; Kawakami K
    Front Neural Circuits; 2013; 7():110. PubMed ID: 23781176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual processing of the zebrafish optic tectum before and after optic nerve damage.
    McDowell AL; Dixon LJ; Houchins JD; Bilotta J
    Vis Neurosci; 2004; 21(2):97-106. PubMed ID: 15259561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensing the strike of a predator fish depends on the specific gravity of a prey fish.
    Stewart WJ; McHenry MJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3769-77. PubMed ID: 21037055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation.
    Kassing V; Engelmann J; Kurtz R
    PLoS One; 2013; 8(5):e62846. PubMed ID: 23667529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.