BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32710821)

  • 41. Learning steers the ontogeny of an efficient hunting sequence in zebrafish larvae.
    Lagogiannis K; Diana G; Meyer MP
    Elife; 2020 Aug; 9():. PubMed ID: 32773042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A synaptic corollary discharge signal suppresses midbrain visual processing during saccade-like locomotion.
    Ali MA; Lischka K; Preuss SJ; Trivedi CA; Bollmann JH
    Nat Commun; 2023 Nov; 14(1):7592. PubMed ID: 37996414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.
    Khakhalin AS; Koren D; Gu J; Xu H; Aizenman CD
    Eur J Neurosci; 2014 Sep; 40(6):2948-62. PubMed ID: 24995793
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae.
    Fornetto C; Tiso N; Pavone FS; Vanzi F
    BMC Biol; 2020 Nov; 18(1):172. PubMed ID: 33243249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A neural model of the interaction of tectal columns in prey-catching behavior.
    Arbib MA; Lara R
    Biol Cybern; 1982; 44(3):185-96. PubMed ID: 7115796
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optic tectal superficial interneurons detect motion in larval zebrafish.
    Yin C; Li X; Du J
    Protein Cell; 2019 Apr; 10(4):238-248. PubMed ID: 30421356
    [TBL] [Abstract][Full Text] [Related]  

  • 47. From behavior to circuit modeling of light-seeking navigation in zebrafish larvae.
    Karpenko S; Wolf S; Lafaye J; Le Goc G; Panier T; Bormuth V; Candelier R; Debrégeas G
    Elife; 2020 Jan; 9():. PubMed ID: 31895038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval.
    Sumbre G; Muto A; Baier H; Poo MM
    Nature; 2008 Nov; 456(7218):102-6. PubMed ID: 18923391
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The superior colliculus and pretectum in visually guided behavior and visual discrimination in the cat.
    Sprague JM; Berlucchi G; Di Berardino A
    Brain Behav Evol; 1970; 3(1):285-94. PubMed ID: 5522349
    [No Abstract]   [Full Text] [Related]  

  • 50. Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map.
    Gnuegge L; Schmid S; Neuhauss SC
    J Neurosci; 2001 May; 21(10):3542-8. PubMed ID: 11331383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan.
    Arenzana FJ; Santos-Ledo A; Porteros A; Aijón J; Velasco A; Lara JM; Arévalo R
    Int J Dev Neurosci; 2011 Jun; 29(4):441-9. PubMed ID: 21392569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rearrangements of the retinotectal projection in Rana pipiens after unilateral caudal half-tectum ablation.
    Udin SB
    J Comp Neurol; 1977 Jun; 173(3):561-82. PubMed ID: 300744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visually guided gradation of prey capture movements in larval zebrafish.
    Patterson BW; Abraham AO; MacIver MA; McLean DL
    J Exp Biol; 2013 Aug; 216(Pt 16):3071-83. PubMed ID: 23619412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior.
    Romano SA; Pietri T; Pérez-Schuster V; Jouary A; Haudrechy M; Sumbre G
    Neuron; 2015 Mar; 85(5):1070-85. PubMed ID: 25704948
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Calcium Imaging of Neuronal Activity in Free-Swimming Larval Zebrafish.
    Muto A; Kawakami K
    Methods Mol Biol; 2016; 1451():333-41. PubMed ID: 27464819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition.
    Felch DL; Khakhalin AS; Aizenman CD
    Elife; 2016 May; 5():. PubMed ID: 27218449
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of activity on axon pathfinding in the optic tectum.
    Kita EM; Scott EK; Goodhill GJ
    Dev Neurobiol; 2015 Jun; 75(6):608-20. PubMed ID: 25556913
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recurrent network interactions explain tectal response variability and experience-dependent behavior.
    Zylbertal A; Bianco IH
    Elife; 2023 Mar; 12():. PubMed ID: 36943029
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Topography of a Visuomotor Transformation.
    Helmbrecht TO; Dal Maschio M; Donovan JC; Koutsouli S; Baier H
    Neuron; 2018 Dec; 100(6):1429-1445.e4. PubMed ID: 30392799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum.
    Gabriel JP; Trivedi CA; Maurer CM; Ryu S; Bollmann JH
    Neuron; 2012 Dec; 76(6):1147-60. PubMed ID: 23259950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.