These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32710821)

  • 61. Visual orienting deficits in frogs with various unilateral lesions.
    Kostyk SK; Grobstein P
    Behav Brain Res; 1982 Dec; 6(4):379-88. PubMed ID: 6983359
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Deconstructing Hunting Behavior Reveals a Tightly Coupled Stimulus-Response Loop.
    Mearns DS; Donovan JC; Fernandes AM; Semmelhack JL; Baier H
    Curr Biol; 2020 Jan; 30(1):54-69.e9. PubMed ID: 31866365
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterisation of sensitivity and orientation tuning for visually responsive ensembles in the zebrafish tectum.
    Thompson AW; Scott EK
    Sci Rep; 2016 Oct; 6():34887. PubMed ID: 27713561
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ablation of a Neuronal Population Using a Two-photon Laser and Its Assessment Using Calcium Imaging and Behavioral Recording in Zebrafish Larvae.
    Muto A; Kawakami K
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29912192
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L.).
    Roth G; Jordan M
    Exp Brain Res; 1982; 45(3):393-8. PubMed ID: 6802665
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DC electrical stimulation of the pretectal thalamus and its effects on the feeding behavior of the toad (Bufo bufo).
    McConville J; Laming PR
    Dev Neurobiol; 2007 Jun; 67(7):875-83. PubMed ID: 17506501
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Eye Removal in Living Zebrafish Larvae to Examine Innervation-dependent Growth and Development of the Visual System.
    Hagen OL; Kim Y; Kushkowski E; Rouse H; Cerveny KL
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35225280
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The contribution of ultraviolet and short-wavelength sensitive cone mechanisms to color vision in rainbow trout.
    Coughlin DJ; Hawryshyn CW
    Brain Behav Evol; 1994; 43(4-5):219-32. PubMed ID: 8038985
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Visual recognition of social signals by a tectothalamic neural circuit.
    Kappel JM; Förster D; Slangewal K; Shainer I; Svara F; Donovan JC; Sherman S; Januszewski M; Baier H; Larsch J
    Nature; 2022 Aug; 608(7921):146-152. PubMed ID: 35831500
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Limitations of Neural Map Topography for Decoding Spatial Information.
    Avitan L; Pujic Z; Hughes NJ; Scott EK; Goodhill GJ
    J Neurosci; 2016 May; 36(19):5385-96. PubMed ID: 27170134
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Apomorphine alters prey-catching patterns in the common toad: behavioral experiments and (14)C-2-deoxyglucose brain mapping studies.
    Glagow M; Ewert J
    Brain Behav Evol; 1999 Oct; 54(4):223-42. PubMed ID: 10592384
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exploring the role of synaptic layering.
    Lippman-Bell J
    Lab Anim (NY); 2016 Feb; 45(2):47. PubMed ID: 26814338
    [No Abstract]   [Full Text] [Related]  

  • 73. Selective, unilateral, reversible loss of behavioral responses to looming stimuli after injection of tetrodotoxin of cadmium chloride into the frog optic nerve.
    King JG; Lettvin JY; Gruberg ED
    Brain Res; 1999 Sep; 841(1-2):20-6. PubMed ID: 10546984
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Defined Cell Types in Superior Colliculus Make Distinct Contributions to Prey Capture Behavior in the Mouse.
    Hoy JL; Bishop HI; Niell CM
    Curr Biol; 2019 Dec; 29(23):4130-4138.e5. PubMed ID: 31761701
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.
    Sumbre G; Poo MM
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):873-9. PubMed ID: 24003199
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio). off.
    Marcus RC; Delaney CL; Easter SS
    Vis Neurosci; 1999; 16(3):417-24. PubMed ID: 10349963
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Roles of periventricular neurons in retinotectal transmission in the optic tectum.
    Kinoshita M; Ito E
    Prog Neurobiol; 2006 Jun; 79(2):112-21. PubMed ID: 16901616
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pretectal neurons control hunting behaviour.
    Antinucci P; Folgueira M; Bianco IH
    Elife; 2019 Oct; 8():. PubMed ID: 31591961
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Two-photon imaging of neural population activity in zebrafish.
    Renninger SL; Orger MB
    Methods; 2013 Aug; 62(3):255-67. PubMed ID: 23727462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.