These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32710821)

  • 81. Two-photon imaging of neural population activity in zebrafish.
    Renninger SL; Orger MB
    Methods; 2013 Aug; 62(3):255-67. PubMed ID: 23727462
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Internal state dynamics shape brainwide activity and foraging behaviour.
    Marques JC; Li M; Schaak D; Robson DN; Li JM
    Nature; 2020 Jan; 577(7789):239-243. PubMed ID: 31853063
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Protocol for using UV stimuli to evoke prey capture strikes in head-fixed zebrafish larvae.
    Khan B; Lazarte IP; Jaesiri OM; Zhao P; Semmelhack JL
    STAR Protoc; 2024 Mar; 5(1):102780. PubMed ID: 38117657
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Topographic wiring of the retinotectal connection in zebrafish.
    Kita EM; Scott EK; Goodhill GJ
    Dev Neurobiol; 2015 Jun; 75(6):542-56. PubMed ID: 25492632
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Morphological identification of prey-selective neurons in the grass frog's optic tectum.
    Ewert JP; Matsumoto N; Schwippert WW
    Naturwissenschaften; 1985 Dec; 72(12):661-3. PubMed ID: 3878945
    [No Abstract]   [Full Text] [Related]  

  • 86. Dynamics of visually guided auditory plasticity in the optic tectum of the barn owl.
    Brainard MS; Knudsen EI
    J Neurophysiol; 1995 Feb; 73(2):595-614. PubMed ID: 7760121
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Optic nerve regeneration in larval zebrafish exhibits spontaneous capacity for retinotopic but not tectum specific axon targeting.
    Harvey BM; Baxter M; Granato M
    PLoS One; 2019; 14(6):e0218667. PubMed ID: 31220164
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (
    Cong L; Wang Z; Chai Y; Hang W; Shang C; Yang W; Bai L; Du J; Wang K; Wen Q
    Elife; 2017 Sep; 6():. PubMed ID: 28930070
    [TBL] [Abstract][Full Text] [Related]  

  • 89. "Shepherd's crook" neurons drive and synchronize the enhancing and suppressive mechanisms of the midbrain stimulus selection network.
    Garrido-Charad F; Vega-Zuniga T; Gutiérrez-Ibáñez C; Fernandez P; López-Jury L; González-Cabrera C; Karten HJ; Luksch H; Marín GJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):E7615-E7623. PubMed ID: 30026198
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Modulation of Cortisol Responses to an Acute Stressor in Zebrafish Visually Exposed to Heterospecific Fish During Development.
    Abreu MS; Oliveira TA; Koakoski G; Barreto RE; Barcellos LJG
    Zebrafish; 2018 Jun; 15(3):228-233. PubMed ID: 29369748
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Neuronal organization underlying visually elicited prey orienting in the frog--I. Effects of various unilateral lesions.
    Kostyk SK; Grobstein P
    Neuroscience; 1987 Apr; 21(1):41-55. PubMed ID: 3496552
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Spatial-tuning properties of auditory neurons in the optic tectum of the pigeon.
    Lewald J; Dörrscheidt GJ
    Brain Res; 1998 Apr; 790(1-2):339-42. PubMed ID: 9593982
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience.
    Busch SE; Khakhalin AS
    J Neurophysiol; 2019 Sep; 122(3):1084-1096. PubMed ID: 31291161
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Global hyper-synchronous spontaneous activity in the developing optic tectum.
    Imaizumi K; Shih JY; Farris HE
    Sci Rep; 2013; 3():1552. PubMed ID: 23531884
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Elements of a stochastic 3D prediction engine in larval zebrafish prey capture.
    Bolton AD; Haesemeyer M; Jordi J; Schaechtle U; Saad FA; Mansinghka VK; Tenenbaum JB; Engert F
    Elife; 2019 Nov; 8():. PubMed ID: 31769753
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Reduced performance of prey targeting in pit vipers with contralaterally occluded infrared and visual senses.
    Chen Q; Deng H; Brauth SE; Ding L; Tang Y
    PLoS One; 2012; 7(5):e34989. PubMed ID: 22606229
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The neural basis of visual behaviors in the larval zebrafish.
    Portugues R; Engert F
    Curr Opin Neurobiol; 2009 Dec; 19(6):644-7. PubMed ID: 19896836
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Radial astrocyte synchronization modulates the visual system during behavioral-state transitions.
    Uribe-Arias A; Rozenblat R; Vinepinsky E; Marachlian E; Kulkarni A; Zada D; Privat M; Topsakalian D; Charpy S; Candat V; Nourin S; Appelbaum L; Sumbre G
    Neuron; 2023 Dec; 111(24):4040-4057.e6. PubMed ID: 37863038
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Probabilistic Models of Larval Zebrafish Behavior Reveal Structure on Many Scales.
    Johnson RE; Linderman S; Panier T; Wee CL; Song E; Herrera KJ; Miller A; Engert F
    Curr Biol; 2020 Jan; 30(1):70-82.e4. PubMed ID: 31866367
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Precise visuomotor transformations underlying collective behavior in larval zebrafish.
    Harpaz R; Nguyen MN; Bahl A; Engert F
    Nat Commun; 2021 Nov; 12(1):6578. PubMed ID: 34772934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.