BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 32710980)

  • 1. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine.
    Velayutham N; Alfieri CM; Agnew EJ; Riggs KW; Baker RS; Ponny SR; Zafar F; Yutzey KE
    J Mol Cell Cardiol; 2020 Sep; 146():95-108. PubMed ID: 32710980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A specialized population of Periostin-expressing cardiac fibroblasts contributes to postnatal cardiomyocyte maturation and innervation.
    Hortells L; Valiente-Alandi I; Thomas ZM; Agnew EJ; Schnell DJ; York AJ; Vagnozzi RJ; Meyer EC; Molkentin JD; Yutzey KE
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21469-21479. PubMed ID: 32817558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Mammalian Cardiomyocyte Cytokinesis by the Extracellular Matrix.
    Wu CC; Jeratsch S; Graumann J; Stainier DYR
    Circ Res; 2020 Sep; 127(7):896-907. PubMed ID: 32564729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Btg1 and Btg2 regulate neonatal cardiomyocyte cell cycle arrest.
    Velayutham N; Calderon MU; Alfieri CM; Padula SL; van Leeuwen FN; Scheijen B; Yutzey KE
    J Mol Cell Cardiol; 2023 Jun; 179():30-41. PubMed ID: 37062247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration.
    Padula SL; Velayutham N; Yutzey KE
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33807107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19.
    Rigaud VOC; Hoy RC; Kurian J; Zarka C; Behanan M; Brosious I; Pennise J; Patel T; Wang T; Johnson J; Kraus LM; Mohsin S; Houser SR; Khan M
    Circulation; 2023 Jan; 147(4):324-337. PubMed ID: 36314132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell Cycle Withdrawal Limit the Regenerative Potential of Neonatal Cardiomyocytes.
    Yan H; Rao X; Wang R; Zhu S; Liu R; Zheng X
    Cardiovasc Eng Technol; 2021 Oct; 12(5):475-484. PubMed ID: 34046845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner.
    Li J; Yang KY; Tam RCY; Chan VW; Lan HY; Hori S; Zhou B; Lui KO
    Theranostics; 2019; 9(15):4324-4341. PubMed ID: 31285764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicellular Transcriptional Analysis of Mammalian Heart Regeneration.
    Quaife-Ryan GA; Sim CB; Ziemann M; Kaspi A; Rafehi H; Ramialison M; El-Osta A; Hudson JE; Porrello ER
    Circulation; 2017 Sep; 136(12):1123-1139. PubMed ID: 28733351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Cycle-Specific Autoencoding Improves Cluster Analysis of Cycling Cardiomyocytes.
    Nguyen T; Nakada Y; Wu Y; Zhao J; Garry DJ; Sadek H; Zhang J
    Stem Cells; 2024 May; 42(5):445-459. PubMed ID: 38587452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro.
    Williams C; Quinn KP; Georgakoudi I; Black LD
    Acta Biomater; 2014 Jan; 10(1):194-204. PubMed ID: 24012606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative Potential of Neonatal Porcine Hearts.
    Zhu W; Zhang E; Zhao M; Chong Z; Fan C; Tang Y; Hunter JD; Borovjagin AV; Walcott GP; Chen JY; Qin G; Zhang J
    Circulation; 2018 Dec; 138(24):2809-2816. PubMed ID: 30030418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of distinct cell cycle stages in cardiomyocytes using the FUCCI transgenic system.
    Baniol M; Murganti F; Smialowska A; Panula J; Lázár E; Brockman V; Giatrellis S; Derks W; Bergmann O
    Exp Cell Res; 2021 Nov; 408(2):112880. PubMed ID: 34655601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of cardiomyocyte and muscle stem cell proliferation in pig.
    Yin B; Ren H; Cai H; Jiang Y; Zhao S; Wang H
    Exp Cell Res; 2020 Mar; 388(2):111854. PubMed ID: 31954694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart.
    Wang X; Senapati S; Akinbote A; Gnanasambandam B; Park PS; Senyo SE
    Acta Biomater; 2020 Sep; 113():380-392. PubMed ID: 32590172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiomyocyte Ploidy, Metabolic Reprogramming and Heart Repair.
    Elia A; Mohsin S; Khan M
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal state transition of cardiomyocyte as a primary step in heart maturation.
    Li Z; Yao F; Yu P; Li D; Zhang M; Mao L; Shen X; Ren Z; Wang L; Zhou B
    Protein Cell; 2022 Nov; 13(11):842-862. PubMed ID: 35394262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tbx6 induces cardiomyocyte proliferation in postnatal and adult mouse hearts.
    Haginiwa S; Sadahiro T; Kojima H; Isomi M; Tamura F; Kurotsu S; Tani H; Muraoka N; Miyake N; Miyake K; Fukuda K; Ieda M
    Biochem Biophys Res Commun; 2019 Jun; 513(4):1041-1047. PubMed ID: 31010673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated proteomics reveals alterations in sarcomere composition and developmental processes during postnatal swine heart development.
    Aballo TJ; Roberts DS; Bayne EF; Zhu W; Walcott G; Mahmoud AI; Zhang J; Ge Y
    J Mol Cell Cardiol; 2023 Mar; 176():33-40. PubMed ID: 36657638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal Cardiac Development and Regenerative Potential in Large Mammals.
    Velayutham N; Agnew EJ; Yutzey KE
    Pediatr Cardiol; 2019 Oct; 40(7):1345-1358. PubMed ID: 31346664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.