These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 32711064)
1. Generative modelling of the thalamo-cortical circuit mechanisms underlying the neurophysiological effects of ketamine. Shaw AD; Muthukumaraswamy SD; Saxena N; Sumner RL; Adams NE; Moran RJ; Singh KD Neuroimage; 2020 Nov; 221():117189. PubMed ID: 32711064 [TBL] [Abstract][Full Text] [Related]
2. Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans. Muthukumaraswamy SD; Shaw AD; Jackson LE; Hall J; Moran R; Saxena N J Neurosci; 2015 Aug; 35(33):11694-706. PubMed ID: 26290246 [TBL] [Abstract][Full Text] [Related]
3. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings. Rivolta D; Heidegger T; Scheller B; Sauer A; Schaum M; Birkner K; Singer W; Wibral M; Uhlhaas PJ Schizophr Bull; 2015 Sep; 41(5):1105-14. PubMed ID: 25987642 [TBL] [Abstract][Full Text] [Related]
5. Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma. Shaw AD; Moran RJ; Muthukumaraswamy SD; Brealy J; Linden DE; Friston KJ; Singh KD Neuroimage; 2017 Nov; 161():19-31. PubMed ID: 28807873 [TBL] [Abstract][Full Text] [Related]
6. Modulation of thalamo-cortical activity by the NMDA receptor antagonists ketamine and phencyclidine in the awake freely-moving rat. Amat-Foraster M; Celada P; Richter U; Jensen AA; Plath N; Artigas F; Herrik KF Neuropharmacology; 2019 Nov; 158():107745. PubMed ID: 31445017 [TBL] [Abstract][Full Text] [Related]
7. Effects of Low Doses of Ketamine on Pyramidal Neurons in Rat Prefrontal Cortex. Shen G; Han F; Shi WX Neuroscience; 2018 Aug; 384():178-187. PubMed ID: 29859979 [TBL] [Abstract][Full Text] [Related]
8. Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks. Amat-Foraster M; Jensen AA; Plath N; Herrik KF; Celada P; Artigas F Neuropharmacology; 2018 Jul; 137():13-23. PubMed ID: 29702122 [TBL] [Abstract][Full Text] [Related]
9. Spectral signatures of serotonergic psychedelics and glutamatergic dissociatives. Pallavicini C; Vilas MG; Villarreal M; Zamberlan F; Muthukumaraswamy S; Nutt D; Carhart-Harris R; Tagliazucchi E Neuroimage; 2019 Oct; 200():281-291. PubMed ID: 31247301 [TBL] [Abstract][Full Text] [Related]
10. Recruitment of GABAA inhibition in rat neocortex is limited and not NMDA dependent. Ling DS; Benardo LS J Neurophysiol; 1995 Dec; 74(6):2329-35. PubMed ID: 8747195 [TBL] [Abstract][Full Text] [Related]
11. Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing. Kulikova SP; Tolmacheva EA; Anderson P; Gaudias J; Adams BE; Zheng T; Pinault D Eur J Neurosci; 2012 Nov; 36(10):3407-19. PubMed ID: 22928838 [TBL] [Abstract][Full Text] [Related]
12. Fast-spiking interneurons and gamma oscillations may be involved in the antidepressant effects of ketamine. Zhou ZQ; Zhang GF; Li XM; Yang C; Yang JJ Med Hypotheses; 2012 Jul; 79(1):85-6. PubMed ID: 22543075 [TBL] [Abstract][Full Text] [Related]
13. Two cellular hypotheses explaining the initiation of ketamine's antidepressant actions: Direct inhibition and disinhibition. Miller OH; Moran JT; Hall BJ Neuropharmacology; 2016 Jan; 100():17-26. PubMed ID: 26211972 [TBL] [Abstract][Full Text] [Related]
14. Evidence that alpha blocking is due to increases in system-level oscillatory damping not neuronal population desynchronisation. Liley DTJ; Muthukumaraswamy SD Neuroimage; 2020 Mar; 208():116408. PubMed ID: 31790751 [TBL] [Abstract][Full Text] [Related]
15. Ten-Hour Exposure to Low-Dose Ketamine Enhances Corticostriatal Cross-Frequency Coupling and Hippocampal Broad-Band Gamma Oscillations. Ye T; Bartlett MJ; Schmit MB; Sherman SJ; Falk T; Cowen SL Front Neural Circuits; 2018; 12():61. PubMed ID: 30150926 [No Abstract] [Full Text] [Related]
16. Ketamine can produce oscillatory dynamics by engaging mechanisms dependent on the kinetics of NMDA receptors. Adam E; Kowalski M; Akeju O; Miller EK; Brown EN; McCarthy MM; Kopell N Proc Natl Acad Sci U S A; 2024 May; 121(22):e2402732121. PubMed ID: 38768339 [TBL] [Abstract][Full Text] [Related]
17. Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats. Moran RJ; Jones MW; Blockeel AJ; Adams RA; Stephan KE; Friston KJ Neuropsychopharmacology; 2015 Jan; 40(2):268-77. PubMed ID: 25053181 [TBL] [Abstract][Full Text] [Related]
18. Neurophysiological evidence that frontoparietal connectivity and GABA-A receptor changes underpin the antidepressant response to ketamine. Sumner RL; McMillan RL; Forsyth A; Muthukumaraswamy SD; Shaw AD Transl Psychiatry; 2024 Feb; 14(1):116. PubMed ID: 38402231 [TBL] [Abstract][Full Text] [Related]
19. Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. McNally JM; McCarley RW; McKenna JT; Yanagawa Y; Brown RE Neuroscience; 2011 Dec; 199():51-63. PubMed ID: 22027237 [TBL] [Abstract][Full Text] [Related]
20. The N-Methyl d-Aspartate Glutamate Receptor Antagonist Ketamine Disrupts the Functional State of the Corticothalamic Pathway. Anderson PM; Jones NC; O'Brien TJ; Pinault D Cereb Cortex; 2017 Jun; 27(6):3172-3185. PubMed ID: 27261525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]