These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32711099)
1. Sterol synthesis pathway inhibition as a target for cancer treatment. Feltrin S; Ravera F; Traversone N; Ferrando L; Bedognetti D; Ballestrero A; Zoppoli G Cancer Lett; 2020 Nov; 493():19-30. PubMed ID: 32711099 [TBL] [Abstract][Full Text] [Related]
2. Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis. Tan JME; Cook ECL; van den Berg M; Scheij S; Zelcer N; Loregger A Atherosclerosis; 2019 Feb; 281():137-142. PubMed ID: 30658189 [TBL] [Abstract][Full Text] [Related]
4. Effect of a novel squalene epoxidase inhibitor, NB-598, on the regulation of cholesterol metabolism in Hep G2 cells. Hidaka Y; Hotta H; Nagata Y; Iwasawa Y; Horie M; Kamei T J Biol Chem; 1991 Jul; 266(20):13171-7. PubMed ID: 1649182 [TBL] [Abstract][Full Text] [Related]
5. Navigating the Shallows and Rapids of Cholesterol Synthesis Downstream of HMGCR. Sharpe LJ; Howe V; Prabhu AV; Luu W; Brown AJ J Nutr Sci Vitaminol (Tokyo); 2015; 61 Suppl():S154-6. PubMed ID: 26598836 [TBL] [Abstract][Full Text] [Related]
6. Effect of FR194738, a potent inhibitor of squalene epoxidase, on cholesterol metabolism in HepG2 cells. Sawada M; Matsuo M; Hagihara H; Tenda N; Nagayoshi A; Okumura H; Washizuka K; Seki J; Goto T Eur J Pharmacol; 2001 Nov; 431(1):11-6. PubMed ID: 11716837 [TBL] [Abstract][Full Text] [Related]
7. The shape of human squalene epoxidase expands the arsenal against cancer. Brown AJ; Chua NK; Yan N Nat Commun; 2019 Feb; 10(1):888. PubMed ID: 30792392 [TBL] [Abstract][Full Text] [Related]
8. The isomiR-140-3p-regulated mevalonic acid pathway as a potential target for prevention of triple negative breast cancer. Bhardwaj A; Singh H; Trinidad CM; Albarracin CT; Hunt KK; Bedrosian I Breast Cancer Res; 2018 Dec; 20(1):150. PubMed ID: 30537987 [TBL] [Abstract][Full Text] [Related]
9. Understanding the cholesterol metabolism-perturbing effects of docosahexaenoic acid by gas chromatography-mass spectrometry targeted metabonomic profiling. Bahety P; Van Nguyen TH; Hong Y; Zhang L; Chan ECY; Ee PLR Eur J Nutr; 2017 Feb; 56(1):29-43. PubMed ID: 26428672 [TBL] [Abstract][Full Text] [Related]
10. New insights into cellular cholesterol acquisition: promoter analysis of human HMGCR and SQLE, two key control enzymes in cholesterol synthesis. Howe V; Sharpe LJ; Prabhu AV; Brown AJ Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jul; 1862(7):647-657. PubMed ID: 28342963 [TBL] [Abstract][Full Text] [Related]
11. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Zelcer N; Sharpe LJ; Loregger A; Kristiana I; Cook EC; Phan L; Stevenson J; Brown AJ Mol Cell Biol; 2014 Apr; 34(7):1262-70. PubMed ID: 24449766 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase. Wentzinger LF; Bach TJ; Hartmann MA Plant Physiol; 2002 Sep; 130(1):334-46. PubMed ID: 12226513 [TBL] [Abstract][Full Text] [Related]
13. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Gill S; Stevenson J; Kristiana I; Brown AJ Cell Metab; 2011 Mar; 13(3):260-73. PubMed ID: 21356516 [TBL] [Abstract][Full Text] [Related]
14. Tissue-specific coordinate regulation of enzymes of cholesterol biosynthesis: sciatic nerve versus liver. Toews AD; Jurevics H; Hostettler J; Roe EB; Morell P J Lipid Res; 1996 Dec; 37(12):2502-9. PubMed ID: 9017503 [TBL] [Abstract][Full Text] [Related]
15. A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Mahoney CE; Pirman D; Chubukov V; Sleger T; Hayes S; Fan ZP; Allen EL; Chen Y; Huang L; Liu M; Zhang Y; McDonald G; Narayanaswamy R; Choe S; Chen Y; Gross S; Cianchetta G; Padyana AK; Murray S; Liu W; Marks KM; Murtie J; Dorsch M; Jin S; Nagaraja N; Biller SA; Roddy T; Popovici-Muller J; Smolen GA Nat Commun; 2019 Jan; 10(1):96. PubMed ID: 30626880 [TBL] [Abstract][Full Text] [Related]
16. [Activities of 3-hydroxyl-3-methylglutaryl-CoA reductase and acetyl-CoA carboxylase and the rate of mevalonic acid, squalene, sterol and fatty acid biosynthesis from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in rat liver: effects of Triton WR 1339, starvation and cholesterol diet]. Poliakova ED; Dizhe EB; Klimova TA; Denisenko TV; Vasil'eva LE Biokhimiia; 1981 Feb; 46(2):296-305. PubMed ID: 6113854 [TBL] [Abstract][Full Text] [Related]
17. Physiological feedback regulation of cholesterol biosynthesis: Role of translational control of hepatic HMG-CoA reductase and possible involvement of oxylanosterols. Ness GC Biochim Biophys Acta; 2015 May; 1851(5):667-73. PubMed ID: 25701719 [TBL] [Abstract][Full Text] [Related]
18. Post-translational control of the long and winding road to cholesterol. Sharpe LJ; Coates HW; Brown AJ J Biol Chem; 2020 Dec; 295(51):17549-17559. PubMed ID: 33453997 [TBL] [Abstract][Full Text] [Related]
19. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Chua NK; Coates HW; Brown AJ Prog Lipid Res; 2020 Jul; 79():101033. PubMed ID: 32360125 [TBL] [Abstract][Full Text] [Related]
20. Pravastatin inhibited the cholesterol synthesis in human hepatoma cell line Hep G2 less than simvastatin and lovastatin, which is reflected in the upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and squalene synthase. Cohen LH; van Vliet A; Roodenburg L; Jansen LM; Griffioen M Biochem Pharmacol; 1993 Jun; 45(11):2203-8. PubMed ID: 8517861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]