These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32711165)

  • 1. Influence of tetraconazole on the proteome profile of Saccharomyces cerevisiae Lalvin T73™ strain.
    Briz-Cid N; Pose-Juan E; Nicoletti M; Simal-Gándara J; Fasoli E; Rial-Otero R
    J Proteomics; 2020 Sep; 227():103915. PubMed ID: 32711165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetraconazole alters the methionine and ergosterol biosynthesis pathways in Saccharomyces yeasts promoting changes on volatile derived compounds.
    Sieiro-Sampedro T; Briz-Cid N; Pose-Juan E; Figueiredo-González M; González-Barreiro C; Simal-Gándara J; Cancho-Grande B; Rial-Otero R
    Food Res Int; 2020 Apr; 130():108930. PubMed ID: 32156378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of two antifungal commercial formulations on the metabolism of a commercial Saccharomyces cerevisiae strain and their repercussion on fermentation evolution and phenylalanine catabolism.
    Sieiro-Sampedro T; Alonso-Del-Real J; Briz-Cid N; Rial-Otero R; Querol A; Simal-Gandara J
    Food Microbiol; 2020 Dec; 92():103554. PubMed ID: 32950148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of mepanipyrim and tetraconazole in Mencía wines on the biosynthesis of volatile compounds during the winemaking process.
    Sieiro-Sampedro T; Figueiredo-González M; González-Barreiro C; Simal-Gandara J; Cancho-Grande B; Rial-Otero R
    Food Chem; 2019 Dec; 300():125223. PubMed ID: 31362157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains.
    Seguinot P; Bloem A; Brial P; Meudec E; Ortiz-Julien A; Camarasa C
    Int J Food Microbiol; 2020 Mar; 316():108441. PubMed ID: 31778839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts.
    Pinu FR; Villas-Boas SG; Martin D
    Food Res Int; 2019 Jul; 121():835-844. PubMed ID: 31108815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mepanipyrim residues on pasteurized red must influence the volatile derived compounds from Saccharomyces cerevisiae metabolism.
    Sieiro-Sampedro T; Pose-Juan E; Briz-Cid N; Figueiredo-González M; Torrado-Agrasar A; González-Barreiro C; Simal-Gandara J; Cancho-Grande B; Rial-Otero R
    Food Res Int; 2019 Dec; 126():108566. PubMed ID: 31732059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins.
    Mendes I; Sanchez I; Franco-Duarte R; Camarasa C; Schuller D; Dequin S; Sousa MJ
    BMC Genomics; 2017 Jun; 18(1):455. PubMed ID: 28595605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing wine ester biosynthesis in mixed Hanseniaspora uvarum/Saccharomyces cerevisiae fermentation by nitrogen nutrient addition.
    Hu K; Jin GJ; Xu YH; Xue SJ; Qiao SJ; Teng YX; Tao YS
    Food Res Int; 2019 Sep; 123():559-566. PubMed ID: 31285005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Management of Multiple Nitrogen Sources during Wine Fermentation by Saccharomyces cerevisiae.
    Crépin L; Truong NM; Bloem A; Sanchez I; Dequin S; Camarasa C
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28115380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering mechanisms of greengage wine fermentation against acidic stress via genomic, transcriptomic, and metabolic analyses of Saccharomyces cerevisiae.
    Tian T; Wu D; Ng CT; Yang H; Liu J; Sun J; Lu J
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7619-7629. PubMed ID: 32651599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of fermentation and enzyme expression profiles among industrial Saccharomyces cerevisiae strains.
    Uebayashi K; Shimizu H; Matsuda F
    Appl Microbiol Biotechnol; 2018 Aug; 102(16):7071-7081. PubMed ID: 29882163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.
    Domizio P; Romani C; Lencioni L; Comitini F; Gobbi M; Mannazzu I; Ciani M
    Int J Food Microbiol; 2011 Jun; 147(3):170-80. PubMed ID: 21531033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-sequencing of Cercospora beticola DMI-sensitive and -resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction.
    Bolton MD; Ebert MK; Faino L; Rivera-Varas V; de Jonge R; Van de Peer Y; Thomma BP; Secor GA
    Fungal Genet Biol; 2016 Jul; 92():1-13. PubMed ID: 27112724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.
    Moreno-García J; García-Martínez T; Millán MC; Mauricio JC; Moreno J
    Food Microbiol; 2015 Oct; 51():1-9. PubMed ID: 26187821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management.
    Sułowicz S; Cycoń M; Piotrowska-Seget Z
    Ecotoxicology; 2016 Aug; 25(6):1047-60. PubMed ID: 27106012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of
    Liu PT; Duan CQ; Yan GL
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The content of linoleic acid in grape must influences the aromatic effect of branched-chain amino acids addition on red wine.
    Liu PT; Yu KJ; Li YT; Duan CQ; Yan GL
    Food Res Int; 2018 Dec; 114():214-222. PubMed ID: 30361019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.
    García-Ríos E; Querol A; Guillamón JM
    J Proteomics; 2016 Sep; 146():70-9. PubMed ID: 27343759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.