These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 32711774)

  • 1. Silicon-mediated plant defense against pathogens and insect pests.
    Islam W; Tayyab M; Khalil F; Hua Z; Huang Z; Chen HYH
    Pestic Biochem Physiol; 2020 Sep; 168():104641. PubMed ID: 32711774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drenched Silicon Suppresses Disease and Insect Pests in Coffee Plant Grown in Controlled Environment by Improving Physiology and Upregulating Defense Genes.
    Yang J; Song J; Jeong BR
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon: its ameliorative effect on plant defense against herbivory.
    Singh A; Kumar A; Hartley S; Singh IK
    J Exp Bot; 2020 Dec; 71(21):6730-6743. PubMed ID: 32591824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica nanoparticles mediated insect pest management.
    Saw G; Nagdev P; Jeer M; Murali-Baskaran RK
    Pestic Biochem Physiol; 2023 Aug; 194():105524. PubMed ID: 37532341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon and Plant Natural Defenses against Insect Pests: Impact on Plant Volatile Organic Compounds and Cascade Effects on Multitrophic Interactions.
    Leroy N; Tombeur F; Walgraffe Y; Cornélis JT; Verheggen FJ
    Plants (Basel); 2019 Oct; 8(11):. PubMed ID: 31652861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insects-plants-pathogens: Toxicity, dependence and defense dynamics.
    Noman A; Aqeel M; Islam W; Khalid N; Akhtar N; Qasim M; Yasin G; Hashem M; Alamri S; Al-Zoubi OM; Jalees MM; Al-Sadi A
    Toxicon; 2021 Jul; 197():87-98. PubMed ID: 33848517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement.
    Verma KK; Song XP; Tian DD; Guo DJ; Chen ZL; Zhong CS; Nikpay A; Singh M; Rajput VD; Singh RK; Minkina T; Li YR
    Plants (Basel); 2021 Oct; 10(10):. PubMed ID: 34685972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of silicon-induced fungal disease resistance in plants.
    Ahammed GJ; Yang Y
    Plant Physiol Biochem; 2021 Aug; 165():200-206. PubMed ID: 34052681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon Nanodots Increase Plant Resistance against Herbivores by Simultaneously Activating Physical and Chemical Defenses.
    Xiao Z; Fan N; Zhu W; Qian HL; Yan XP; Wang Z; Rasmann S
    ACS Nano; 2023 Feb; 17(3):3107-3118. PubMed ID: 36705522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Defense Networks against Insect-Borne Pathogens.
    Ye J; Zhang L; Zhang X; Wu X; Fang R
    Trends Plant Sci; 2021 Mar; 26(3):272-287. PubMed ID: 33277186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon's Role in Abiotic and Biotic Plant Stresses.
    Debona D; Rodrigues FA; Datnoff LE
    Annu Rev Phytopathol; 2017 Aug; 55():85-107. PubMed ID: 28504920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of selenium for controlling plant fungal diseases and insect pests.
    Li Q; Xian L; Yuan L; Lin Z; Chen X; Wang J; Li T
    Front Plant Sci; 2023; 14():1102594. PubMed ID: 36909414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Plant anti-herbivore defense priming: Concept, mechanisms and application.].
    Wang J; Song YY; Hu L; Yang MY; Zeng RS
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):2068-2078. PubMed ID: 29974718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-herbivore activity of soluble silicon for crop protection in agriculture: a review.
    Murali-Baskaran RK; Senthil-Nathan S; Hunter WB
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):2626-2637. PubMed ID: 33150504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture.
    Ranjan A; Sinha R; Bala M; Pareek A; Singla-Pareek SL; Singh AK
    Plant Physiol Biochem; 2021 Jun; 163():15-25. PubMed ID: 33799014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research progress on the underlying mechanisms of plant defense enzymes in response to pest stress.
    Guo ZG; Wang MX; Cui L; Han BY
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):4248-4258. PubMed ID: 30584754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The controversies of silicon's role in plant biology.
    Coskun D; Deshmukh R; Sonah H; Menzies JG; Reynolds O; Ma JF; Kronzucker HJ; Bélanger RR
    New Phytol; 2019 Jan; 221(1):67-85. PubMed ID: 30007071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits.
    Das Laha S; Kundu A; Podder S
    Planta; 2024 Mar; 259(5):97. PubMed ID: 38520529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.