BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 32712190)

  • 1. An integrated architecture for intelligence evaluation of automated vehicles.
    Huang H; Zheng X; Yang Y; Liu J; Liu W; Wang J
    Accid Anal Prev; 2020 Sep; 145():105681. PubMed ID: 32712190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety evaluation method in multi-logical scenarios for automated vehicles based on naturalistic driving trajectory.
    Zhang P; Zhu B; Zhao J; Fan T; Sun Y
    Accid Anal Prev; 2023 Feb; 180():106926. PubMed ID: 36543079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overtaking maneuvers on two-lane highways under the microscope: Exploration of a multidimensional framework for the analysis of safety, comfort and efficiency using simulator data.
    Zhang R; Qiong B; Brijs K; Hermans E; Qu Q; Shen Y
    Accid Anal Prev; 2024 Jul; 202():107613. PubMed ID: 38705109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and evaluation of cooperative human-machine interface for changing lanes in conditional driving automation.
    Muslim H; Kiu Leung C; Itoh M
    Accid Anal Prev; 2022 Sep; 174():106719. PubMed ID: 35660872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of varying levels of vehicle automation on drivers' lane changing behaviour.
    Madigan R; Louw T; Merat N
    PLoS One; 2018; 13(2):e0192190. PubMed ID: 29466402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do drivers overtake pedestrians? Evidence from field test and naturalistic driving data.
    Rasch A; Panero G; Boda CN; Dozza M
    Accid Anal Prev; 2020 May; 139():105494. PubMed ID: 32203729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Law compliance decision making for autonomous vehicles on highways.
    Ma X; Song L; Zhao C; Wu S; Yu W; Wang W; Yang L; Wang H
    Accid Anal Prev; 2024 Sep; 204():107620. PubMed ID: 38823082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.
    Jeong E; Oh C; Lee S
    Accid Anal Prev; 2017 Jul; 104():115-124. PubMed ID: 28499140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles.
    Mechernene A; Judalet V; Chaibet A; Boukhnifer M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.
    Merat N; Lee JD
    Hum Factors; 2012 Oct; 54(5):681-6. PubMed ID: 23156614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of motor control requirements on drivers' eye-gaze pattern during automated driving.
    Goncalves RC; Louw TL; Quaresma M; Madigan R; Merat N
    Accid Anal Prev; 2020 Dec; 148():105788. PubMed ID: 33039820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles.
    Mahdinia I; Mohammadnazar A; Arvin R; Khattak AJ
    Accid Anal Prev; 2021 Mar; 152():106006. PubMed ID: 33556655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.