These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 32712190)

  • 21. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Keeping the driver in the loop through semi-automated or manual lane changes in conditionally automated driving.
    Dillmann J; den Hartigh RJR; Kurpiers CM; Pelzer J; Raisch FK; Cox RFA; de Waard D
    Accid Anal Prev; 2021 Nov; 162():106397. PubMed ID: 34563644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluate driver response to active warning system in level-2 automated vehicles.
    Atwood JR; Guo F; Blanco M
    Accid Anal Prev; 2019 Jul; 128():132-138. PubMed ID: 31005004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-agent traffic simulations to estimate the impact of automated technologies on safety.
    Kitajima S; Shimono K; Tajima J; Antona-Makoshi J; Uchida N
    Traffic Inj Prev; 2019; 20(sup1):S58-S64. PubMed ID: 31381431
    [No Abstract]   [Full Text] [Related]  

  • 25. Development of a Framework for Generating Driving Safety Assessment Scenarios for Automated Vehicles.
    Ko W; Park S; Yun J; Park S; Yun I
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling take-over performance in level 3 conditionally automated vehicles.
    Gold C; Happee R; Bengler K
    Accid Anal Prev; 2018 Jul; 116():3-13. PubMed ID: 29196019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new method of temporal and spatial risk estimation for lane change considering conventional recognition defects.
    Wu J; Wen H; Qi W
    Accid Anal Prev; 2020 Dec; 148():105796. PubMed ID: 33099126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding take-over performance of high crash risk drivers during conditionally automated driving.
    Lin Q; Li S; Ma X; Lu G
    Accid Anal Prev; 2020 Aug; 143():105543. PubMed ID: 32485431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving.
    Gonçalves RC; Louw TL; Madigan R; Quaresma M; Romano R; Merat N
    Accid Anal Prev; 2022 Sep; 174():106726. PubMed ID: 35716544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Taking Over Control From Highly Automated Vehicles in Complex Traffic Situations: The Role of Traffic Density.
    Gold C; Körber M; Lechner D; Bengler K
    Hum Factors; 2016 Jun; 58(4):642-52. PubMed ID: 26984515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A freeway vehicle early warning method based on risk map: Enhancing traffic safety through global perspective characterization of driving risk.
    Cui C; An B; Li L; Qu X; Manda H; Ran B
    Accid Anal Prev; 2024 Aug; 203():107611. PubMed ID: 38733809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Take-over performance in evasive manoeuvres.
    Happee R; Gold C; Radlmayr J; Hergeth S; Bengler K
    Accid Anal Prev; 2017 Sep; 106():211-222. PubMed ID: 28645018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Intelligent Approach to Lane-Change Behavior Prediction for Intelligent and Connected Vehicles.
    Du L; Chen W; Ji J; Pei Z; Tong B; Zheng H
    Comput Intell Neurosci; 2022; 2022():9516218. PubMed ID: 35082845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Longitudinal safety evaluation of connected vehicles' platooning on expressways.
    Rahman MS; Abdel-Aty M
    Accid Anal Prev; 2018 Aug; 117():381-391. PubMed ID: 29275900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A framework for definition of logical scenarios for safety assurance of automated driving.
    Weber H; Bock J; Klimke J; Roesener C; Hiller J; Krajewski R; Zlocki A; Eckstein L
    Traffic Inj Prev; 2019; 20(sup1):S65-S70. PubMed ID: 31381437
    [No Abstract]   [Full Text] [Related]  

  • 36. Assessment of the safety benefits of vehicles' advanced driver assistance, connectivity and low level automation systems.
    Yue L; Abdel-Aty M; Wu Y; Wang L
    Accid Anal Prev; 2018 Aug; 117():55-64. PubMed ID: 29654988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Moving Into the Loop: An Investigation of Drivers' Steering Behavior in Highly Automated Vehicles.
    Alsaid A; Lee JD; Price M
    Hum Factors; 2020 Jun; 62(4):671-683. PubMed ID: 31180728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A safety score for the assessment of driving style.
    Schöner HP; Pretto P; Sodnik J; Kaluza B; Komavec M; Varesanovic D; Chouchane H; Antona-Makoshi J
    Traffic Inj Prev; 2021; 22(5):384-389. PubMed ID: 33881358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Driver-initiated take-overs during critical evasion maneuvers in automated driving.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2024 Jan; 194():107362. PubMed ID: 37931430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.