These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 32712248)
1. Docosahexaenoic acid differentially modulates the cell cycle and metabolism- related genes in tumor and pre-malignant prostate cells. Tamarindo GH; Góes RM Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Oct; 1865(10):158766. PubMed ID: 32712248 [TBL] [Abstract][Full Text] [Related]
2. Melatonin and Docosahexaenoic Acid Decrease Proliferation of PNT1A Prostate Benign Cells via Modulation of Mitochondrial Bioenergetics and ROS Production. Tamarindo GH; Ribeiro DL; Gobbo MG; Guerra LHA; Rahal P; Taboga SR; Gadelha FR; Góes RM Oxid Med Cell Longev; 2019; 2019():5080798. PubMed ID: 30728886 [TBL] [Abstract][Full Text] [Related]
3. The polyunsaturated fatty acid docosahexaenoic affects mitochondrial function in prostate cancer cells. Tamarindo GH; Ribeiro CF; Silva ADT; Castro A; Caruso ÍP; Souza FP; Taboga SR; Loda M; Góes RM Cancer Metab; 2024 Aug; 12(1):24. PubMed ID: 39113152 [TBL] [Abstract][Full Text] [Related]
4. Docosahexaenoic acid inhibits the growth of hormone-dependent prostate cancer cells by promoting the degradation of the androgen receptor. Hu Z; Qi H; Zhang R; Zhang K; Shi Z; Chang Y; Chen L; Esmaeili M; Baniahmad A; Hong W Mol Med Rep; 2015 Sep; 12(3):3769-3774. PubMed ID: 25997493 [TBL] [Abstract][Full Text] [Related]
5. Involvement of apoptotic pathways in docosahexaenoic acid-induced benefit in prostate cancer: Pathway-focused gene expression analysis using RT Sun Y; Jia X; Hou L; Liu X; Gao Q Lipids Health Dis; 2017 Mar; 16(1):59. PubMed ID: 28330470 [TBL] [Abstract][Full Text] [Related]
6. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer. Ding M; Jiang CY; Zhang Y; Zhao J; Han BM; Xia SJ J Exp Clin Cancer Res; 2020 Feb; 39(1):28. PubMed ID: 32019578 [TBL] [Abstract][Full Text] [Related]
7. Increased Akt signaling resulting from the loss of androgen responsiveness in prostate cancer. Dulinska-Litewka J; McCubrey JA; Laidler P Curr Med Chem; 2013; 20(1):144-57. PubMed ID: 23033951 [TBL] [Abstract][Full Text] [Related]
8. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Choi HE; Shin JS; Leem DG; Kim SD; Cho WJ; Lee KT Chem Biol Interact; 2016 Dec; 260():196-207. PubMed ID: 27720946 [TBL] [Abstract][Full Text] [Related]
9. Androgen action during prostate carcinogenesis. Wang D; Tindall DJ Methods Mol Biol; 2011; 776():25-44. PubMed ID: 21796518 [TBL] [Abstract][Full Text] [Related]
10. Prostate androgen-regulated gene: a novel potential target for androgen-independent prostate cancer therapy. Xu XF; Zhou SW; Zhang X; Ye ZQ; Zhang JH; Ma X; Zheng T; Li HZ Asian J Androl; 2006 Jul; 8(4):455-62. PubMed ID: 16763722 [TBL] [Abstract][Full Text] [Related]
11. The therapeutic effects of docosahexaenoic acid on oestrogen/androgen-induced benign prostatic hyperplasia in rats. Wang C; Luo F; Zhou Y; Du X; Shi J; Zhao X; Xu Y; Zhu Y; Hong W; Zhang J Exp Cell Res; 2016 Jul; 345(2):125-33. PubMed ID: 25849092 [TBL] [Abstract][Full Text] [Related]
12. Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Narayanan BA; Narayanan NK; Reddy BS Int J Oncol; 2001 Dec; 19(6):1255-62. PubMed ID: 11713597 [TBL] [Abstract][Full Text] [Related]
13. Stimulating effect of palmitate and insulin on cell migration and proliferation in PNT1A and PC3 prostate cells: Counteracting role of metformin. Landim BC; de Jesus MM; Bosque BP; Zanon RG; da Silva CV; Góes RM; Ribeiro DL Prostate; 2018 Jul; 78(10):731-742. PubMed ID: 29635803 [TBL] [Abstract][Full Text] [Related]
14. An androgen-independent androgen receptor function protects from inositol hexakisphosphate toxicity in the PC3/PC3(AR) prostate cancer cell lines. Diallo JS; Péant B; Lessard L; Delvoye N; Le Page C; Mes-Masson AM; Saad F Prostate; 2006 Sep; 66(12):1245-56. PubMed ID: 16705740 [TBL] [Abstract][Full Text] [Related]
16. Androgenic up-regulation of androgen receptor cDNA expression in androgen-independent prostate cancer cells. Dai JL; Maiorino CA; Gkonos PJ; Burnstein KL Steroids; 1996 Sep; 61(9):531-9. PubMed ID: 8883219 [TBL] [Abstract][Full Text] [Related]
17. Expression profiles and functional associations of endogenous androgen receptor and caveolin-1 in prostate cancer cell lines. Bennett NC; Hooper JD; Johnson DW; Gobe GC Prostate; 2014 May; 74(5):478-87. PubMed ID: 24375805 [TBL] [Abstract][Full Text] [Related]
18. Differential effects of PXD101 (belinostat) on androgen-dependent and androgen-independent prostate cancer models. Gravina GL; Marampon F; Giusti I; Carosa E; Di Sante S; Ricevuto E; Dolo V; Tombolini V; Jannini EA; Festuccia C Int J Oncol; 2012 Mar; 40(3):711-20. PubMed ID: 22134754 [TBL] [Abstract][Full Text] [Related]
19. Docosahexaenoic acid enhances the efficacy of docetaxel in prostate cancer cells by modulation of apoptosis: the role of genes associated with the NF-kappaB pathway. Shaikh IA; Brown I; Schofield AC; Wahle KW; Heys SD Prostate; 2008 Nov; 68(15):1635-46. PubMed ID: 18668525 [TBL] [Abstract][Full Text] [Related]