These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32712567)
1. Magnaporthe oryzae MoNdt80 is a transcriptional regulator of GlcNAc catabolic pathway involved in pathogenesis. Bhatt DN; Ansari S; Kumar A; Ghosh S; Narula A; Datta A Microbiol Res; 2020 Oct; 239():126550. PubMed ID: 32712567 [TBL] [Abstract][Full Text] [Related]
2. Magnaporthe oryzae aminosugar metabolism is essential for successful host colonization. Kumar A; Ghosh S; Bhatt DN; Narula A; Datta A Environ Microbiol; 2016 Mar; 18(3):1063-77. PubMed ID: 26754109 [TBL] [Abstract][Full Text] [Related]
3. Hybrid de novo genome-reassembly reveals new insights on pathways and pathogenicity determinants in rice blast pathogen Magnaporthe oryzae RMg_Dl. Reddy B; Kumar A; Mehta S; Sheoran N; Chinnusamy V; Prakash G Sci Rep; 2021 Nov; 11(1):22922. PubMed ID: 34824307 [TBL] [Abstract][Full Text] [Related]
4. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1. Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444 [TBL] [Abstract][Full Text] [Related]
5. Saha P; Ghosh S; Roy-Barman S mSphere; 2020 Apr; 5(2):. PubMed ID: 32238572 [TBL] [Abstract][Full Text] [Related]
6. The Role of Cell Wall Degrading Enzymes in Pathogenesis of Magnaporthe oryzae. Quoc NB; Chau NNB Curr Protein Pept Sci; 2017; 18(10):1019-1034. PubMed ID: 27526928 [TBL] [Abstract][Full Text] [Related]
7. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Kim S; Kim CY; Park SY; Kim KT; Jeon J; Chung H; Choi G; Kwon S; Choi J; Jeon J; Jeon JS; Khang CH; Kang S; Lee YH Nat Commun; 2020 Nov; 11(1):5845. PubMed ID: 33203871 [TBL] [Abstract][Full Text] [Related]
8. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. Zhou S; Liu X; Sun W; Zhang M; Yin Y; Pan S; He D; Shen M; Yang J; Zheng Q; Wang W Mol Plant Pathol; 2021 Apr; 22(4):422-439. PubMed ID: 33559339 [TBL] [Abstract][Full Text] [Related]
9. A novel L-arabinose-responsive regulator discovered in the rice-blast fungus Pyricularia oryzae (Magnaporthe oryzae). Klaubauf S; Zhou M; Lebrun MH; de Vries RP; Battaglia E FEBS Lett; 2016 Feb; 590(4):550-8. PubMed ID: 26790567 [TBL] [Abstract][Full Text] [Related]
10. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Zhang S; Lin C; Zhou T; Zhang LH; Deng YZ Cell Microbiol; 2020 Jan; 22(1):e13114. PubMed ID: 31487436 [TBL] [Abstract][Full Text] [Related]
11. Emergence of a hybrid PKS-NRPS secondary metabolite cluster in a clonal population of the rice blast fungus Magnaporthe oryzae. Zhong Z; Lin L; Zheng H; Bao J; Chen M; Zhang L; Tang W; Ebbole DJ; Wang Z Environ Microbiol; 2020 Jul; 22(7):2709-2723. PubMed ID: 32216010 [TBL] [Abstract][Full Text] [Related]
12. Gene deletion and constitutive expression of the pectate lyase gene 1 (MoPL1) lead to diminished virulence of Magnaporthe oryzae. Wegner A; Casanova F; Loehrer M; Jordine A; Bohnert S; Liu X; Zhang Z; Schaffrath U J Microbiol; 2022 Jan; 60(1):79-88. PubMed ID: 34964944 [TBL] [Abstract][Full Text] [Related]
13. Deng S; Sun W; Dong L; Cui G; Deng YZ mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736 [No Abstract] [Full Text] [Related]
14. The regulatory factor X protein MoRfx1 is required for development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Sun D; Cao H; Shi Y; Huang P; Dong B; Liu X; Lin F; Lu J Mol Plant Pathol; 2017 Oct; 18(8):1075-1088. PubMed ID: 27434465 [TBL] [Abstract][Full Text] [Related]
15. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416 [TBL] [Abstract][Full Text] [Related]
16. [Transcriptome analysis of early interaction between rice and Magnaporthe oryzae using next-generation sequencing technology]. Li XL; Bai B; Wu J; Deng QY; Zhou B Yi Chuan; 2012 Jan; 34(1):102-12. PubMed ID: 22306879 [TBL] [Abstract][Full Text] [Related]
17. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. Cao H; Huang P; Zhang L; Shi Y; Sun D; Yan Y; Liu X; Dong B; Chen G; Snyder JH; Lin F; Lu J New Phytol; 2016 Aug; 211(3):1035-51. PubMed ID: 27041000 [TBL] [Abstract][Full Text] [Related]
18. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. Zheng H; Zhong Z; Shi M; Zhang L; Lin L; Hong Y; Fang T; Zhu Y; Guo J; Zhang L; Fang J; Lin H; Norvienyeku J; Chen X; Lu G; Hu H; Wang Z BMC Genomics; 2018 Dec; 19(1):927. PubMed ID: 30545292 [TBL] [Abstract][Full Text] [Related]
19. Xlr1 is involved in the transcriptional control of the pentose catabolic pathway, but not hemi-cellulolytic enzymes in Magnaporthe oryzae. Battaglia E; Klaubauf S; Vallet J; Ribot C; Lebrun MH; de Vries RP Fungal Genet Biol; 2013 Aug; 57():76-84. PubMed ID: 23810898 [TBL] [Abstract][Full Text] [Related]
20. Genetic evidence for Wilson RA; Fernandez J; Rocha RO; Marroquin-Guzman M; Wright JD Microbiology (Reading); 2019 Nov; 165(11):1198-1202. PubMed ID: 31517594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]