BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 32712662)

  • 1. Candida tropicalis RON1 is required for hyphal formation, biofilm development, and virulence but is dispensable for N-acetylglucosamine catabolism.
    Song YD; Hsu CC; Lew SQ; Lin CH
    Med Mycol; 2021 Apr; 59(4):379-391. PubMed ID: 32712662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Analysis of
    Min K; Biermann A; Hogan DA; Konopka JB
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30463924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis.
    Lew SQ; Lin CH
    Curr Genet; 2021 Apr; 67(2):249-254. PubMed ID: 33388851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in
    Naseem S; Min K; Spitzer D; Gardin J; Konopka JB
    Genetics; 2017 May; 206(1):299-314. PubMed ID: 28348062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-acetylglucosamine catabolic gene cluster in Trichoderma reesei is controlled by the Ndt80-like transcription factor RON1.
    Kappel L; Gaderer R; Flipphi M; Seidl-Seiboth V
    Mol Microbiol; 2016 Feb; 99(4):640-57. PubMed ID: 26481444
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Zhang Q; Xu L; Yuan S; Zhou Q; Wang X; Wang L; Hu Z; Yan Y
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516879
    [No Abstract]   [Full Text] [Related]  

  • 7. N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast,
    Hanumantha Rao K; Paul S; Ghosh S
    J Fungi (Basel); 2021 Jan; 7(1):. PubMed ID: 33477740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein kinase A governs growth and virulence in Candida tropicalis.
    Lin CJ; Wu CY; Yu SJ; Chen YL
    Virulence; 2018 Jan; 9(1):331-347. PubMed ID: 29254431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of filamentation in the human fungal pathogen Candida tropicalis.
    Zhang Q; Tao L; Guan G; Yue H; Liang W; Cao C; Dai Y; Huang G
    Mol Microbiol; 2016 Feb; 99(3):528-45. PubMed ID: 26466925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida tropicalis affects the virulence profile of Candida albicans: an in vitro and in vivo study.
    de Barros PP; Rossoni RD; Freire F; Ribeiro FC; Lopes LADC; Junqueira JC; Jorge AOC
    Pathog Dis; 2018 Mar; 76(2):. PubMed ID: 29617858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells.
    Jiang C; Li Z; Zhang L; Tian Y; Dong D; Peng Y
    Microbiol Res; 2016 Nov; 192():65-72. PubMed ID: 27664724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyphal growth in Candida albicans does not require induction of hyphal-specific gene expression.
    Naseem S; Araya E; Konopka JB
    Mol Biol Cell; 2015 Mar; 26(6):1174-87. PubMed ID: 25609092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcineurin controls hyphal growth, virulence, and drug tolerance of Candida tropicalis.
    Chen YL; Yu SJ; Huang HY; Chang YL; Lehman VN; Silao FG; Bigol UG; Bungay AA; Averette A; Heitman J
    Eukaryot Cell; 2014 Jul; 13(7):844-54. PubMed ID: 24442892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro interaction of Candida tropicalis biofilm formed on catheter with human cells.
    Capote-Bonato F; Sakita KM; de Oliveira AG; Bonfim-Mendonça PS; Crivellenti LZ; Negri M; Estivalet Svidzinski TI
    Microb Pathog; 2018 Dec; 125():177-182. PubMed ID: 30227228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis.
    Gong J; Huang Q; Liang W; Wei Y; Huang G
    Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):463-470. PubMed ID: 30968937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sexual biofilm formation in Candida tropicalis opaque cells.
    Jones SK; Hirakawa MP; Bennett RJ
    Mol Microbiol; 2014 Apr; 92(2):383-98. PubMed ID: 24612417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcription factor Ron1 is required for chitin metabolism, asexual development and pathogenicity in Beauveria bassiana, an entomopathogenic fungus.
    Qiu L; Song JZ; Li J; Zhang TS; Li Z; Hu SJ; Liu JH; Dong JC; Cheng W; Wang JJ
    Int J Biol Macromol; 2022 May; 206():875-885. PubMed ID: 35278517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism.
    Naseem S; Gunasekera A; Araya E; Konopka JB
    J Biol Chem; 2011 Aug; 286(33):28671-28680. PubMed ID: 21700702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extracellular DNA from Candida albicans and pneumonia-related pathogens on Candida biofilm formation and hyphal transformation.
    Sapaar B; Nur A; Hirota K; Yumoto H; Murakami K; Amoh T; Matsuo T; Ichikawa T; Miyake Y
    J Appl Microbiol; 2014 Jun; 116(6):1531-42. PubMed ID: 24661775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies.
    McCall AD; Kumar R; Edgerton M
    PLoS Pathog; 2018 Sep; 14(9):e1007316. PubMed ID: 30252918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.