These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32712731)

  • 1. Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil.
    Li R; Wu H; Ding J; Li N; Fu W; Gan L; Li Y
    Plant Cell Rep; 2020 Oct; 39(10):1369-1380. PubMed ID: 32712731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants.
    Bizily SP; Kim T; Kandasamy MK; Meagher RB
    Plant Physiol; 2003 Feb; 131(2):463-71. PubMed ID: 12586871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.
    Lyyra S; Meagher RB; Kim T; Heaton A; Montello P; Balish RS; Merkle SA
    Plant Biotechnol J; 2007 Mar; 5(2):254-62. PubMed ID: 17309680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants.
    Li R; Wu H; Ding J; Fu W; Gan L; Li Y
    Sci Rep; 2017 May; 7():46545. PubMed ID: 28484233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering to enhance mercury phytoremediation.
    Ruiz ON; Daniell H
    Curr Opin Biotechnol; 2009 Apr; 20(2):213-9. PubMed ID: 19328673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.
    Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic tobacco plant expressing environmental E. coli merA gene for enhanced volatilization of ionic mercury.
    Haque S; Zeyaullah M; Nabi G; Srivastava PS; Ali A
    J Microbiol Biotechnol; 2010 May; 20(5):917-24. PubMed ID: 20519916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA).
    Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD
    Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of transgenic yellow poplar for mercury phytoremediation.
    Rugh CL; Senecoff JF; Meagher RB; Merkle SA
    Nat Biotechnol; 1998 Oct; 16(10):925-8. PubMed ID: 9788347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China.
    Yang B; Gao Y; Zhang C; Zheng X; Li B
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):391-398. PubMed ID: 31792793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a transgenic tobacco plant for phytoremediation of methylmercury pollution.
    Nagata T; Morita H; Akizawa T; Pan-Hou H
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):781-6. PubMed ID: 20393701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene.
    He YK; Sun JG; Feng XZ; Czakó M; Márton L
    Cell Res; 2001 Sep; 11(3):231-6. PubMed ID: 11642409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytodetoxification of hazardous organomercurials by genetically engineered plants.
    Bizily SP; Rugh CL; Meagher RB
    Nat Biotechnol; 2000 Feb; 18(2):213-7. PubMed ID: 10657131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
    Meagher RB; Heaton AC
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-soluble mercury induced by organic amendments affected microbial community assemblage in mercury-polluted paddy soil.
    Hu H; Li M; Wang G; Drosos M; Li Z; Hu Z; Xi B
    Chemosphere; 2019 Dec; 236():124405. PubMed ID: 31545202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanded Diversity and Phylogeny of
    Christakis CA; Barkay T; Boyd ES
    Front Microbiol; 2021; 12():682605. PubMed ID: 34248899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenic Spartina alterniflora for phytoremediation.
    Czakó M; Feng X; He Y; Liang D; Márton L
    Environ Geochem Health; 2006; 28(1-2):103-10. PubMed ID: 16528587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance.
    Heaton AC; Rugh CL; Kim T; Wang NJ; Meagher RB
    Environ Toxicol Chem; 2003 Dec; 22(12):2940-7. PubMed ID: 14713034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury contamination and health risk to crops around the zinc smelting plant in Huludao City, northeastern China.
    Zheng N; Wang Q; Zheng D
    Environ Geochem Health; 2007 Oct; 29(5):385-93. PubMed ID: 17431800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials.
    Bizily SP; Rugh CL; Summers AO; Meagher RB
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6808-13. PubMed ID: 10359794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.