These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32713052)

  • 1. The SCIFF-Derived Ranthipeptides Participate in Quorum Sensing in Solventogenic Clostridia.
    Chen Y; Yang Y; Ji X; Zhao R; Li G; Gu Y; Shi A; Jiang W; Zhang Q
    Biotechnol J; 2020 Oct; 15(10):e2000136. PubMed ID: 32713052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution and Substrate Specificity of the Thioether-Forming Radical
    Precord TW; Mahanta N; Mitchell DA
    ACS Chem Biol; 2019 Sep; 14(9):1981-1989. PubMed ID: 31449382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging Substrate Promiscuity of a Radical
    Eastman KAS; Kincannon WM; Bandarian V
    ACS Cent Sci; 2022 Aug; 8(8):1209-1217. PubMed ID: 36032765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link.
    Bruender NA; Wilcoxen J; Britt RD; Bandarian V
    Biochemistry; 2016 Apr; 55(14):2122-34. PubMed ID: 27007615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical Approach to Enzymatic β-Thioether Bond Formation.
    Caruso A; Bushin LB; Clark KA; Martinie RJ; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jan; 141(2):990-997. PubMed ID: 30521328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota
    Balty C; Guillot A; Fradale L; Brewee C; Boulay M; Kubiak X; Benjdia A; Berteau O
    J Biol Chem; 2019 Oct; 294(40):14512-14525. PubMed ID: 31337708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sporulation in solventogenic and acetogenic clostridia.
    Diallo M; Kengen SWM; López-Contreras AM
    Appl Microbiol Biotechnol; 2021 May; 105(9):3533-3557. PubMed ID: 33900426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products.
    Lewis JK; Jochimsen AS; Lefave SJ; Young AP; Kincannon WM; Roberts AG; Kieber-Emmons MT; Bandarian V
    Biochemistry; 2021 Nov; 60(45):3347-3361. PubMed ID: 34730336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of Cittilins, Unusual Ribosomally Synthesized and Post-translationally Modified Peptides from
    Hug JJ; Dastbaz J; Adam S; Revermann O; Koehnke J; Krug D; Müller R
    ACS Chem Biol; 2020 Aug; 15(8):2221-2231. PubMed ID: 32639716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrocyclization and Backbone Modification in RiPP Biosynthesis.
    Lee H; van der Donk WA
    Annu Rev Biochem; 2022 Jun; 91():269-294. PubMed ID: 35303785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi.
    Ye Y; Minami A; Igarashi Y; Izumikawa M; Umemura M; Nagano N; Machida M; Kawahara T; Shin-Ya K; Gomi K; Oikawa H
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8072-5. PubMed ID: 27166860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.