BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 32713168)

  • 1. GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions.
    Gonzalez EA; Bell MAL
    J Biomed Opt; 2020 Jul; 25(7):1-19. PubMed ID: 32713168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming.
    Paul S; Mulani S; Singh MKA; Singh MS
    Med Phys; 2023 Dec; 50(12):7525-7538. PubMed ID: 37843980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined Ultrasound and Photoacoustic Image Guidance of Spinal Pedicle Cannulation Demonstrated With Intact ex vivo Specimens.
    Gonzalez EA; Jain A; Bell MAL
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2479-2489. PubMed ID: 33347403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized spatial coherence reconstruction for photoacoustic computed tomography.
    Tordera Mora J; Feng X; Nyayapathi N; Xia J; Gao L
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33880892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging.
    Lediju Bell MA; Kuo NP; Song DY; Kang JU; Boctor EM
    J Biomed Opt; 2014 Dec; 19(12):126011. PubMed ID: 25531797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic Spatial Coherence Theory and Applications to Coherence-Based Image Contrast and Resolution.
    Graham MT; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2069-2084. PubMed ID: 32746173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A; Gonzalez E; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations and human cadaver head studies to identify optimal acoustic receiver locations for minimally invasive photoacoustic-guided neurosurgery.
    Graham MT; Huang J; Creighton FX; Lediju Bell MA
    Photoacoustics; 2020 Sep; 19():100183. PubMed ID: 32695578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Short-Lag Spatial Coherence Imaging.
    Nair AA; Tran TD; Bell MAL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):366-377. PubMed ID: 29505405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU-accelerated Double-stage Delay-multiply-and-sum Algorithm for Fast Photoacoustic Tomography Using LED Excitation and Linear Arrays.
    Miri Rostami SR; Mozaffarzadeh M; Ghaffari-Miab M; Hariri A; Jokerst J
    Ultrason Imaging; 2019 Sep; 41(5):301-316. PubMed ID: 31322057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Real-Time, GPU-Based Implementation of Aperture Domain Model Image REconstruction.
    Khan C; Dei K; Schlunk S; Ozgun K; Byram B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2101-2116. PubMed ID: 33531299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
    Qi Y; Wang Y; Yu J; Guo Y
    Biomed Eng Online; 2019 Apr; 18(1):48. PubMed ID: 31014338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds.
    Lediju Bell MA; Kuo N; Song DY; Boctor EM
    Biomed Opt Express; 2013; 4(10):1964-77. PubMed ID: 24156057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition.
    Al Mukaddim R; Weichmann AM; Mitchell CC; Varghese T
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33876591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Sensitivity in Ultrasound Molecular Imaging With Coherence-Based Beamforming.
    Hyun D; Abou-Elkacem L; Perez VA; Chowdhury SM; Willmann JK; Dahl JJ
    IEEE Trans Med Imaging; 2018 Jan; 37(1):241-250. PubMed ID: 29293430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Coherence Beamforming With Multi-Line Transmission to Enhance the Contrast of Coherent Structures in Ultrasound Images Degraded by Acoustic Clutter.
    Matrone G; Bell MAL; Ramalli A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3570-3582. PubMed ID: 34310298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Demonstration of Photoacoustic Image Guidance and Robotic Visual Servoing for Cardiac Catheter-Based Interventions.
    Graham M; Assis F; Allman D; Wiacek A; Gonzalez E; Gubbi M; Dong J; Hou H; Beck S; Chrispin J; Bell MAL
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1015-1029. PubMed ID: 31502964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Delay and Sum With Enveloping Beamforming Algorithm for Photoacoustic Imaging.
    Ma X; Peng C; Yuan J; Cheng Q; Xu G; Wang X; Carson PL
    IEEE Trans Med Imaging; 2020 Jun; 39(6):1812-1821. PubMed ID: 31831411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-lag spatial coherence imaging on matrix arrays, part 1: Beamforming methods and simulation studies.
    Hyun D; Trahey GE; Jakovljevic M; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jul; 61(7):1101-12. PubMed ID: 24960700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
    Zhao J; Wang Y; Yu J; Guo W; Zhang S; Aliabadi S
    Ultrason Imaging; 2017 Jul; 39(4):224-239. PubMed ID: 28068874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.