BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32713286)

  • 1. Reciprocal Upshot of Nitric Oxide, Endoplasmic Reticulum Stress, and Ubiquitin Proteasome System in Parkinson's Disease Pathology.
    Tiwari S; Singh S
    Neuroscientist; 2021 Aug; 27(4):340-354. PubMed ID: 32713286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UBA52 Is Crucial in HSP90 Ubiquitylation and Neurodegenerative Signaling during Early Phase of Parkinson's Disease.
    Tiwari S; Singh A; Gupta P; Singh S
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Ubiquitin-Proteasome System and Mitophagy in the Pathogenesis of Parkinson's Disease.
    Liang Y; Zhong G; Ren M; Sun T; Li Y; Ye M; Ma C; Guo Y; Liu C
    Neuromolecular Med; 2023 Dec; 25(4):471-488. PubMed ID: 37698835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin-proteasome system and Parkinson's diseases.
    Betarbet R; Sherer TB; Greenamyre JT
    Exp Neurol; 2005 Feb; 191 Suppl 1():S17-27. PubMed ID: 15629758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson's disease.
    Sun F; Kanthasamy A; Anantharam V; Kanthasamy AG
    Pharmacol Ther; 2007 Jun; 114(3):327-44. PubMed ID: 17521740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein.
    Fujikawa K; Nakahara K; Takasugi N; Nishiya T; Ito A; Uchida K; Uehara T
    Biochem Biophys Res Commun; 2020 Apr; 524(4):910-915. PubMed ID: 32051088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of Tyrosine Hydroxylase by the Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease and Dopa-Responsive Dystonia.
    Kawahata I; Fukunaga K
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32471089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent Molecular Pathways in Type 2 Diabetes Mellitus and Parkinson's Disease: Insights into Mechanisms and Pathological Consequences.
    Xxxx S; Ahmad MH; Rani L; Mondal AC
    Mol Neurobiol; 2022 Jul; 59(7):4466-4487. PubMed ID: 35575870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of neurodegeneration in Parkinson's disease: clues from Mendelian syndromes.
    Lim KL; Lim TM
    IUBMB Life; 2003 Jun; 55(6):315-22. PubMed ID: 12938733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical evaluation of the ubiquitin-proteasome system in Parkinson's disease.
    Cook C; Petrucelli L
    Biochim Biophys Acta; 2009 Jul; 1792(7):664-75. PubMed ID: 19419700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease.
    Zhao Y; Lin M; Zhai F; Chen J; Jin X
    Pharmaceuticals (Basel); 2024 Jun; 17(6):. PubMed ID: 38931449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha-synuclein aggregation, Ubiquitin proteasome system impairment, and L-Dopa response in zinc-induced Parkinsonism: resemblance to sporadic Parkinson's disease.
    Kumar V; Singh D; Singh BK; Singh S; Mittra N; Jha RR; Patel DK; Singh C
    Mol Cell Biochem; 2018 Jul; 444(1-2):149-160. PubMed ID: 29198021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and pathological role of the ubiquitin-proteasome system in the vascular smooth muscle cell.
    Demasi M; Laurindo FR
    Cardiovasc Res; 2012 Jul; 95(2):183-93. PubMed ID: 22451513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson's disease (PD).
    Zhou ZD; Sathiyamoorthy S; Angeles DC; Tan EK
    Mol Brain; 2016 Apr; 9():41. PubMed ID: 27090516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Pathological mechanisms of Parkinson's disease].
    Matsui H; Takahashi R
    Brain Nerve; 2009 Apr; 61(4):441-6. PubMed ID: 19378814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heredity in Parkinson's disease: new findings.
    Lev N; Melamed E
    Isr Med Assoc J; 2001 Jun; 3(6):435-8. PubMed ID: 11433638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductions of the components of the calreticulin/calnexin quality-control system by proteasome inhibitors and their relevance in a rodent model of Parkinson's disease.
    Kuang XL; Liu F; Chen H; Li Y; Liu Y; Xiao J; Shan G; Li M; Snider BJ; Qu J; Barger SW; Wu S
    J Neurosci Res; 2014 Oct; 92(10):1319-29. PubMed ID: 24860980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pathways and genetic aspects of Parkinson's disease: from bench to bedside.
    Di Napoli M; Shah IM; Stewart DA
    Expert Rev Neurother; 2007 Dec; 7(12):1693-729. PubMed ID: 18052765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endoplasmic reticulum stress and Parkinson's disease: the role of HRD1 in averting apoptosis in neurodegenerative disease.
    Omura T; Kaneko M; Okuma Y; Matsubara K; Nomura Y
    Oxid Med Cell Longev; 2013; 2013():239854. PubMed ID: 23710284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.