These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 32713312)
81. Characterizing and modelling river channel migration rates at a regional scale: Case study of south-east France. Alber A; Piégay H J Environ Manage; 2017 Nov; 202(Pt 2):479-493. PubMed ID: 27889365 [TBL] [Abstract][Full Text] [Related]
82. Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions. Baldock TE; Golshani A; Atkinson A; Shimamoto T; Wu S; Callaghan DP; Mumby PJ Mar Pollut Bull; 2015 Aug; 97(1-2):188-198. PubMed ID: 26093817 [TBL] [Abstract][Full Text] [Related]
83. Three-dimensional modeling of fecal coliform in the Tidal Basin and Washington Channel, Washington, DC. Bai S; Lung WS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1327-46. PubMed ID: 16854806 [TBL] [Abstract][Full Text] [Related]
84. Microscale air quality impacts of distributed power generation facilities. Olaguer EP; Knipping E; Shaw S; Ravindran S J Air Waste Manag Assoc; 2016 Aug; 66(8):795-806. PubMed ID: 27191342 [TBL] [Abstract][Full Text] [Related]
85. Modelling the environmental behaviour of pollutants in Algeciras Bay (south Spain). Periáñez R Mar Pollut Bull; 2012 Feb; 64(2):221-32. PubMed ID: 22206725 [TBL] [Abstract][Full Text] [Related]
86. CFD-DEM modelling of sediment transport in sewer systems under steady and unsteady flow conditions. Alihosseini M; Sægrov S; Thamsen PU Water Sci Technol; 2019 Dec; 80(11):2141-2147. PubMed ID: 32198331 [TBL] [Abstract][Full Text] [Related]
87. Tidal eddies in a semi-enclosed basin: a model study. Vethamony P; Reddy GS; Babu MT; Desa E; Sudheesh K Mar Environ Res; 2005 Jun; 59(5):519-32. PubMed ID: 15603772 [TBL] [Abstract][Full Text] [Related]
88. Modelling hydrodynamics and sediment flux within a macrotidal estuary: problems and solutions. Gleizon P; Punt AG; Lyons MG Sci Total Environ; 2003 Oct; 314-316():589-97. PubMed ID: 14499552 [TBL] [Abstract][Full Text] [Related]
89. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds. Gil M; Ramil F; AgÍs JA Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142 [TBL] [Abstract][Full Text] [Related]
90. Satellite-based observations of unexpected coastal changes due to the Saemangeum Dyke construction, Korea. Lee YK; Ryu JH; Choi JK; Lee S; Woo HJ Mar Pollut Bull; 2015 Aug; 97(1-2):150-159. PubMed ID: 26104827 [TBL] [Abstract][Full Text] [Related]
91. Wave energy distribution at inlet channel margins as a function of ebb tidal delta morphology: Cananéia Inlet, São Paulo, Brazil. Ambrosio BG; Sousa PHGO; Gagliardi MH; Siegle E An Acad Bras Cienc; 2020 Mar; 92(1):e20180677. PubMed ID: 32187275 [TBL] [Abstract][Full Text] [Related]
92. Modification of animal habitat by large plants: mechanisms by which seagrasses influence clam growth. Irlandi EA; Peterson CH Oecologia; 1991 Sep; 87(3):307-318. PubMed ID: 28313255 [TBL] [Abstract][Full Text] [Related]
93. Ticks on the Channel Islands and implications for public health. Gillingham EL; Hansford KM; Meadows S; Henney J; Wieckowski F; Hernández-Triana LM; Muscat I; Muscat J; Beckert C; Nikolova NI; Cull B; Medlock JM Ticks Tick Borne Dis; 2020 May; 11(3):101405. PubMed ID: 32046929 [TBL] [Abstract][Full Text] [Related]
94. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Baar AW; Boechat Albernaz M; van Dijk WM; Kleinhans MG Nat Commun; 2019 Oct; 10(1):4903. PubMed ID: 31653869 [TBL] [Abstract][Full Text] [Related]
95. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines. Batten WM; Harrison ME; Bahaj AS Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120293. PubMed ID: 23319711 [TBL] [Abstract][Full Text] [Related]
96. East Victoria long term hydrodynamic modelling: Dataset and methodology. Greer D; McIntosh R; Case M; McLean DL; Treml EA; Galaiduk R Data Brief; 2024 Dec; 57():110921. PubMed ID: 39351135 [TBL] [Abstract][Full Text] [Related]
97. New research in tidal current energy. Bahaj AS Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120501. PubMed ID: 23319715 [No Abstract] [Full Text] [Related]
98. A review of the UK and British Channel Islands practical tidal stream energy resource. Coles D; Angeloudis A; Greaves D; Hastie G; Lewis M; Mackie L; McNaughton J; Miles J; Neill S; Piggott M; Risch D; Scott B; Sparling C; Stallard T; Thies P; Walker S; White D; Willden R; Williamson B Proc Math Phys Eng Sci; 2021 Nov; 477(2255):20210469. PubMed ID: 35153596 [TBL] [Abstract][Full Text] [Related]
99. The energy yield potential of a large tidal stream turbine array in the Alderney Race. Coles DS; Blunden LS; Bahaj AS Philos Trans A Math Phys Eng Sci; 2020 Aug; 378(2178):20190502. PubMed ID: 32713310 [TBL] [Abstract][Full Text] [Related]
100. Tidal current power effects on nearby sandbanks: a case study in the Race of Alderney. Blunden LS; Haynes SG; Bahaj AS Philos Trans A Math Phys Eng Sci; 2020 Aug; 378(2178):20190503. PubMed ID: 32713312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]