These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32713317)
21. Influence of turbulence on the wake of a marine current turbine simulator. Blackmore T; Batten WM; Bahaj AS Proc Math Phys Eng Sci; 2014 Oct; 470(2170):20140331. PubMed ID: 25294966 [TBL] [Abstract][Full Text] [Related]
22. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines. Churchfield MJ; Li Y; Moriarty PJ Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120421. PubMed ID: 23319713 [TBL] [Abstract][Full Text] [Related]
23. Black guillemot ecology in relation to tidal stream energy generation: An evaluation of current knowledge and information gaps. Johnston DT; Furness RW; Robbins AMC; Tyler G; Taggart MA; Masden EA Mar Environ Res; 2018 Mar; 134():121-129. PubMed ID: 29370936 [TBL] [Abstract][Full Text] [Related]
24. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Karsten R; Swan A; Culina J Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120189. PubMed ID: 23319706 [TBL] [Abstract][Full Text] [Related]
25. Modelling of the flow field surrounding tidal turbine arrays for varying positions in a channel. Daly T; Myers LE; Bahaj AS Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120246. PubMed ID: 23319708 [TBL] [Abstract][Full Text] [Related]
26. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related]
27. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities? Kregting L; Elsaesser B; Kennedy R; Smyth D; O'Carroll J; Savidge G PLoS One; 2016; 11(8):e0161279. PubMed ID: 27560657 [TBL] [Abstract][Full Text] [Related]
28. From tides to mixing along the Hawaiian ridge. Rudnick DL; Boyd TJ; Brainard RE; Carter GS; Egbert GD; Gregg MC; Holloway PE; Klymak JM; Kunze E; Lee CM; Levine MD; Luther DS; Martin JP; Merrifield MA; Moum JN; Nash JD; Pinkel R; Rainville L; Sanford TB Science; 2003 Jul; 301(5631):355-7. PubMed ID: 12869758 [TBL] [Abstract][Full Text] [Related]
29. Collision risk modelling for tidal energy devices: A flexible simulation-based approach. Horne N; Culloch RM; Schmitt P; Lieber L; Wilson B; Dale AC; Houghton JDR; Kregting LT J Environ Manage; 2021 Jan; 278(Pt 1):111484. PubMed ID: 33120093 [TBL] [Abstract][Full Text] [Related]
30. The structure of turbulence in a rapid tidal flow. Milne IA; Sharma RN; Flay RGJ Proc Math Phys Eng Sci; 2017 Aug; 473(2204):20170295. PubMed ID: 28878563 [TBL] [Abstract][Full Text] [Related]
31. An observational study of hydrodynamic impact on water mass transport due to tidal power generation. Kim JW; Woo SB; Song JI; Kwon HK Sci Total Environ; 2022 Feb; 807(Pt 3):151013. PubMed ID: 34662618 [TBL] [Abstract][Full Text] [Related]
32. Characteristics of the turbulence in the flow at a tidal stream power site. Milne IA; Sharma RN; Flay RG; Bickerton S Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120196. PubMed ID: 23319707 [TBL] [Abstract][Full Text] [Related]
33. Energy storage inherent in large tidal turbine farms. Vennell R; Adcock TA Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130580. PubMed ID: 24910516 [TBL] [Abstract][Full Text] [Related]
34. Wave Energy Assessment at Valencia Gulf and Comparison of Energy Production of Most Suitable Wave Energy Converters. Cascajo R; GarcĂa E; Quiles E; Morant F; Correcher A Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33207680 [TBL] [Abstract][Full Text] [Related]
35. Spatiotemporal Distribution Characteristics of Nutrients in the Drowned Tidal Inlet under the Influence of Tides: A Case Study of Zhanjiang Bay, China. Wang S; Zhou F; Chen F; Meng Y; Zhu Q Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33669962 [TBL] [Abstract][Full Text] [Related]
36. Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice. Zhang X; Zhang L; Yuan Y; Zhai Q Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32131488 [TBL] [Abstract][Full Text] [Related]
37. Tidal stream to mainstream: mechanical testing of composite tidal stream blades to de-risk operational design life. Glennon C; Finnegan W; Kaufmann N; Meier P; Jiang Y; Starzmann R; Goggins J J Ocean Eng Mar Energy; 2022; 8(2):163-182. PubMed ID: 35528145 [TBL] [Abstract][Full Text] [Related]
38. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches. Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J J Biomech; 2010 Aug; 43(12):2281-7. PubMed ID: 20488446 [TBL] [Abstract][Full Text] [Related]
39. Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes. Debnath M; Santoni C; Leonardi S; Iungo GV Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265029 [TBL] [Abstract][Full Text] [Related]
40. The effect of bed roughness uncertainty on tidal stream power estimates for the Pentland Firth. Kreitmair MJ; Adcock TAA; Borthwick AGL; Draper S; van den Bremer TS R Soc Open Sci; 2020 Jan; 7(1):191127. PubMed ID: 32218944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]