These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 32713624)

  • 1. Early Prediction of Acute Kidney Injury in the Emergency Department With Machine-Learning Methods Applied to Electronic Health Record Data.
    Martinez DA; Levin SR; Klein EY; Parikh CR; Menez S; Taylor RA; Hinson JS
    Ann Emerg Med; 2020 Oct; 76(4):501-514. PubMed ID: 32713624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model.
    Koyner JL; Carey KA; Edelson DP; Churpek MM
    Crit Care Med; 2018 Jul; 46(7):1070-1077. PubMed ID: 29596073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Multicenter Ward-Based AKI Prediction Model.
    Koyner JL; Adhikari R; Edelson DP; Churpek MM
    Clin J Am Soc Nephrol; 2016 Nov; 11(11):1935-1943. PubMed ID: 27633727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study.
    Hsu CN; Liu CL; Tain YL; Kuo CY; Lin YC
    J Med Internet Res; 2020 Aug; 22(8):e16903. PubMed ID: 32749223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning for dynamic and early prediction of acute kidney injury after cardiac surgery.
    Ryan CT; Zeng Z; Chatterjee S; Wall MJ; Moon MR; Coselli JS; Rosengart TK; Li M; Ghanta RK
    J Thorac Cardiovasc Surg; 2023 Dec; 166(6):e551-e564. PubMed ID: 36347651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal and External Validation of a Machine Learning Risk Score for Acute Kidney Injury.
    Churpek MM; Carey KA; Edelson DP; Singh T; Astor BC; Gilbert ER; Winslow C; Shah N; Afshar M; Koyner JL
    JAMA Netw Open; 2020 Aug; 3(8):e2012892. PubMed ID: 32780123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diagnostic accuracy of plasma neutrophil gelatinase-associated lipocalin in the prediction of acute kidney injury in emergency department patients with suspected sepsis.
    Shapiro NI; Trzeciak S; Hollander JE; Birkhahn R; Otero R; Osborn TM; Moretti E; Nguyen HB; Gunnerson K; Milzman D; Gaieski DF; Goyal M; Cairns CB; Kupfer K; Lee SW; Rivers EP
    Ann Emerg Med; 2010 Jul; 56(1):52-59.e1. PubMed ID: 20363526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergency department triage prediction of clinical outcomes using machine learning models.
    Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K
    Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting AKI in emergency admissions: an external validation study of the acute kidney injury prediction score (APS).
    Hodgson LE; Dimitrov BD; Roderick PJ; Venn R; Forni LG
    BMJ Open; 2017 Mar; 7(3):e013511. PubMed ID: 28274964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage.
    Goto T; Camargo CA; Faridi MK; Freishtat RJ; Hasegawa K
    JAMA Netw Open; 2019 Jan; 2(1):e186937. PubMed ID: 30646206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of Machine Learning Models to Predict Admission From Emergency Department to Inpatient and Intensive Care Units.
    Fenn A; Davis C; Buckland DM; Kapadia N; Nichols M; Gao M; Knechtle W; Balu S; Sendak M; Theiling BJ
    Ann Emerg Med; 2021 Aug; 78(2):290-302. PubMed ID: 33972128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-Learning-Based Electronic Triage More Accurately Differentiates Patients With Respect to Clinical Outcomes Compared With the Emergency Severity Index.
    Levin S; Toerper M; Hamrock E; Hinson JS; Barnes S; Gardner H; Dugas A; Linton B; Kirsch T; Kelen G
    Ann Emerg Med; 2018 May; 71(5):565-574.e2. PubMed ID: 28888332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical narrative-aware deep neural network for emergency department critical outcome prediction.
    Chen MC; Huang TY; Chen TY; Boonyarat P; Chang YC
    J Biomed Inform; 2023 Feb; 138():104284. PubMed ID: 36632861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting frequent emergency department use among children with epilepsy: A retrospective cohort study using electronic health data from 2 centers.
    Grinspan ZM; Patel AD; Hafeez B; Abramson EL; Kern LM
    Epilepsia; 2018 Jan; 59(1):155-169. PubMed ID: 29143960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning based early mortality prediction in the emergency department.
    Li C; Zhang Z; Ren Y; Nie H; Lei Y; Qiu H; Xu Z; Pu X
    Int J Med Inform; 2021 Nov; 155():104570. PubMed ID: 34547624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine Learning-Based Model to Predict Acute Traumatic Coagulopathy in Trauma Patients Upon Emergency Hospitalization.
    Li K; Wu H; Pan F; Chen L; Feng C; Liu Y; Hui H; Cai X; Che H; Ma Y; Li T
    Clin Appl Thromb Hemost; 2020; 26():1076029619897827. PubMed ID: 31908189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and External Validation of a Machine Learning Tool to Rule Out COVID-19 Among Adults in the Emergency Department Using Routine Blood Tests: A Large, Multicenter, Real-World Study.
    Plante TB; Blau AM; Berg AN; Weinberg AS; Jun IC; Tapson VF; Kanigan TS; Adib AB
    J Med Internet Res; 2020 Dec; 22(12):e24048. PubMed ID: 33226957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning versus physicians' prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor.
    Flechet M; Falini S; Bonetti C; Güiza F; Schetz M; Van den Berghe G; Meyfroidt G
    Crit Care; 2019 Aug; 23(1):282. PubMed ID: 31420056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of a prediction model for emergency department acute kidney injury.
    Phillips AO; Foxwell DA; Pradhan S; Zouwail S; Rainer TH
    Am J Emerg Med; 2021 Feb; 40():64-69. PubMed ID: 33348226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.