These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32714113)
21. Variation of Proteolytic Cleavage Sites towards the N-Terminal End of the S2 Subunit of the Novel SARS-CoV-2 Omicron Sublineage BA.2.12.1. Schilling NA; Kalbacher H; Burster T Molecules; 2022 Sep; 27(18):. PubMed ID: 36144551 [TBL] [Abstract][Full Text] [Related]
22. The "LLQY" Motif on SARS-CoV-2 Spike Protein Affects S Incorporation into Virus Particles. Du S; Xu W; Wang Y; Li L; Hao P; Tian M; Wang M; Li T; Wu S; Liu Q; Bai J; Qu X; Jin N; Zhou B; Liao M; Li C J Virol; 2022 Mar; 96(6):e0189721. PubMed ID: 35045269 [TBL] [Abstract][Full Text] [Related]
23. SARS-CoV-2's claimed natural origin is undermined by issues with genome sequences of its relative strains: Coronavirus sequences RaTG13, MP789 and RmYN02 raise multiple questions to be critically addressed by the scientific community. Deigin Y; Segreto R Bioessays; 2021 Jul; 43(7):e2100015. PubMed ID: 34046923 [TBL] [Abstract][Full Text] [Related]
24. An update on the origin of SARS-CoV-2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O-linked glycan residues. Malaiyan J; Arumugam S; Mohan K; Gomathi Radhakrishnan G J Med Virol; 2021 Jan; 93(1):499-505. PubMed ID: 32633815 [TBL] [Abstract][Full Text] [Related]
25. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407 [TBL] [Abstract][Full Text] [Related]
26. Trypsin enhances SARS-CoV-2 infection by facilitating viral entry. Kim Y; Jang G; Lee D; Kim N; Seon JW; Kim YH; Lee C Arch Virol; 2022 Feb; 167(2):441-458. PubMed ID: 35079901 [TBL] [Abstract][Full Text] [Related]
27. The PRRA insert at the S1/S2 site modulates cellular tropism of SARS-CoV-2 and ACE2 usage by the closely related Bat RaTG13. Liu S; Selvaraj P; Lien CZ; Nunez IA; Wu WW; Chou CK; Wang TT J Virol; 2021 May; 95(11):. PubMed ID: 33685917 [TBL] [Abstract][Full Text] [Related]
28. Evolutionary Perspective and Theories on the Possible Origin of SARS-CoV-2. Saeed AA Cureus; 2021 Oct; 13(10):e18981. PubMed ID: 34820236 [TBL] [Abstract][Full Text] [Related]
29. Viral and Host Attributes Underlying the Origins of Zoonotic Coronaviruses in Bats. Stout AE; Guo Q; Millet JK; Whittaker GR Comp Med; 2021 Oct; 71(5):442-450. PubMed ID: 34635199 [TBL] [Abstract][Full Text] [Related]
30. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. Anand P; Puranik A; Aravamudan M; Venkatakrishnan AJ; Soundararajan V Elife; 2020 May; 9():. PubMed ID: 32452762 [TBL] [Abstract][Full Text] [Related]
31. Probable human origin of the SARS-CoV-2 polybasic furin cleavage motif. Romeu AR BMC Genom Data; 2023 Nov; 24(1):71. PubMed ID: 37990144 [TBL] [Abstract][Full Text] [Related]
32. Structures and dynamics of the novel S1/S2 protease cleavage site loop of the SARS-CoV-2 spike glycoprotein. Lemmin T; Kalbermatter D; Harder D; Plattet P; Fotiadis D J Struct Biol X; 2020; 4():100038. PubMed ID: 33043289 [TBL] [Abstract][Full Text] [Related]
33. Recombination in sarbecovirus lineage and mutations/insertions in spike protein are linked to the emergence and adaptation of SARS-CoV-2. Som A; Sharma AK; Kumari P Bioinformation; 2022; 18(10):951-961. PubMed ID: 37693920 [TBL] [Abstract][Full Text] [Related]
34. A novel antibody against the furin cleavage site of SARS-CoV-2 spike protein: Effects on proteolytic cleavage and ACE2 binding. Spelios MG; Capanelli JM; Li AW Immunol Lett; 2022 Feb; 242():1-7. PubMed ID: 35007661 [TBL] [Abstract][Full Text] [Related]
35. Conservation analysis of SARS-CoV-2 spike suggests complicated viral adaptation history from bat to human. Lei KC; Zhang XD Evol Med Public Health; 2020; 2020(1):290-303. PubMed ID: 33372198 [TBL] [Abstract][Full Text] [Related]
36. Insight towards the effect of the multi basic cleavage site of SARS-CoV-2 spike protein on cellular proteases. Shokeen K; Pandey S; Shah M; Kumar S Virus Res; 2022 Sep; 318():198845. PubMed ID: 35680004 [TBL] [Abstract][Full Text] [Related]
37. Roles of host proteases in the entry of SARS-CoV-2. Zabiegala A; Kim Y; Chang KO Anim Dis; 2023; 3(1):12. PubMed ID: 37128508 [TBL] [Abstract][Full Text] [Related]
38. SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity. Sasaki M; Toba S; Itakura Y; Chambaro HM; Kishimoto M; Tabata K; Intaruck K; Uemura K; Sanaki T; Sato A; Hall WW; Orba Y; Sawa H mBio; 2021 Aug; 12(4):e0141521. PubMed ID: 34425707 [TBL] [Abstract][Full Text] [Related]
39. Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein. Yamamoto M; Gohda J; Kobayashi A; Tomita K; Hirayama Y; Koshikawa N; Seiki M; Semba K; Akiyama T; Kawaguchi Y; Inoue JI mBio; 2022 Aug; 13(4):e0051922. PubMed ID: 35708281 [TBL] [Abstract][Full Text] [Related]
40. Study of protease-mediated processes initiating viral infection and cell-cell viral spreading of SARS-CoV-2. Thaingtamtanha T; Baeurle SA J Mol Model; 2022 Jul; 28(8):224. PubMed ID: 35854129 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]