These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 32714127)

  • 1. A Systematic Review Establishing the Current State-of-the-Art, the Limitations, and the DESIRED Checklist in Studies of Direct Neural Interfacing With Robotic Gait Devices in Stroke Rehabilitation.
    Lennon O; Tonellato M; Del Felice A; Di Marco R; Fingleton C; Korik A; Guanziroli E; Molteni F; Guger C; Otner R; Coyle D
    Front Neurosci; 2020; 14():578. PubMed ID: 32714127
    [No Abstract]   [Full Text] [Related]  

  • 2. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications.
    García-Cossio E; Severens M; Nienhuis B; Duysens J; Desain P; Keijsers N; Farquhar J
    PLoS One; 2015; 10(12):e0137910. PubMed ID: 26675472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
    Suarez-Escobar M; Rendon-Velez E
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):683-703. PubMed ID: 29334274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation.
    Brauchle D; Vukelić M; Bauer R; Gharabaghi A
    Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of EMG-Triggered Robotic Movement on Walking, Muscle Force and Spasticity after an Ischemic Stroke.
    Lewandowska-Sroka P; Stabrawa R; Kozak D; Poświata A; Łysoń-Uklańska B; Bienias K; Roksela A; Kliś M; Mikulski M
    Medicina (Kaunas); 2021 Mar; 57(3):. PubMed ID: 33801295
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study.
    Son C; Lee A; Lee J; Kim D; Kim SJ; Chun MH; Choi J
    J Neuroeng Rehabil; 2021 Dec; 18(1):185. PubMed ID: 34961541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wearable resistive robot facilitates locomotor adaptations during gait.
    Washabaugh EP; Krishnan C
    Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Robot-Assisted Gait Training and Non-Invasive Brain Stimulation in Chronic Stroke Patients: A Systematic Review.
    Bressi F; Cinnera AM; Morone G; Campagnola B; Cricenti L; Santacaterina F; Miccinilli S; Zollo L; Paolucci S; Di Lazzaro V; Sterzi S; Bravi M
    Front Neurol; 2022; 13():795788. PubMed ID: 35585844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromechanical-assisted training for walking after stroke.
    Mehrholz J; Thomas S; Werner C; Kugler J; Pohl M; Elsner B
    Cochrane Database Syst Rev; 2017 May; 5(5):CD006185. PubMed ID: 28488268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.
    He Y; Nathan K; Venkatakrishnan A; Rovekamp R; Beck C; Ozdemir R; Francisco GE; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3985-8. PubMed ID: 25570865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.
    Bulea TC; Kilicarslan A; Ozdemir R; Paloski WH; Contreras-Vidal JL
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RObotic-Assisted Rehabilitation for balance and gait in Stroke patients (ROAR-S): study protocol for a preliminary randomized controlled trial.
    Giovannini S; Iacovelli C; Brau F; Loreti C; Fusco A; Caliandro P; Biscotti L; Padua L; Bernabei R; Castelli L
    Trials; 2022 Oct; 23(1):872. PubMed ID: 36224575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers.
    Tortora S; Tonin L; Chisari C; Micera S; Menegatti E; Artoni F
    Front Neurorobot; 2020; 14():582728. PubMed ID: 33281593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromechanical-assisted training for walking after stroke.
    Mehrholz J; Thomas S; Kugler J; Pohl M; Elsner B
    Cochrane Database Syst Rev; 2020 Oct; 10(10):CD006185. PubMed ID: 33091160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain (EEG) and muscle (EMG) activity related to 3D sit-to-stand kinematics in healthy adults and in central neurological pathology - A systematic review.
    McDonald C; El Yaakoubi NA; Lennon O
    Gait Posture; 2024 Sep; 113():374-397. PubMed ID: 39068871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke.
    Androwis GJ; Pilkar R; Ramanujam A; Nolan KJ
    Front Neurol; 2018; 9():630. PubMed ID: 30131756
    [No Abstract]   [Full Text] [Related]  

  • 19. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.
    Tortora S; Tonin L; Sieghartsleitner S; Ortner R; Guger C; Lennon O; Coyle D; Menegatti E; Felice AD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2988-3003. PubMed ID: 37432820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.