These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48 related articles for article (PubMed ID: 3271426)
1. A neutron scattering study of the ternary complex EF-Tu.GTP-valyl-tRNAVal1A. Osterberg R; Elias P; Kjems J; Bauer R J Biomol Struct Dyn; 1986 Jun; 3(6):1111-20. PubMed ID: 3271426 [TBL] [Abstract][Full Text] [Related]
2. Small-angle neutron scattering study of the ternary complex formed between bacterial elongation factor Tu, guanosine 5'-triphosphate, and valyl-tRNAVal. Antonsson B; Leberman R; Jacrot B; Zaccai G Biochemistry; 1986 Jun; 25(12):3655-9. PubMed ID: 3521728 [TBL] [Abstract][Full Text] [Related]
3. Solution structure of the ternary complex between aminoacyl-tRNA, elongation factor Tu, and guanosine triphosphate. Bilgin N; Ehrenberg M; Ebel C; Zaccai G; Sayers Z; Koch MH; Svergun DI; Barberato C; Volkov V; Nissen P; Nyborg J Biochemistry; 1998 Jun; 37(22):8163-72. PubMed ID: 9609712 [TBL] [Abstract][Full Text] [Related]
4. The triple isotopic substitution method in small angle neutron scattering. Application to the study of the ternary complex EF-Tu.GTP.aminoacyl-tRNA. Serdyuk IN; Pavlov MYu ; Rublevskaya IN; Zaccaï G; Leberman R Biophys Chem; 1994 Dec; 53(1-2):123-30. PubMed ID: 7841329 [TBL] [Abstract][Full Text] [Related]
6. A small-angle X-ray scattering study of the complex formation between elongation factor Tu . GTP and valyl-tRNA Val I from Escherichia coli. Osterberg R; Sjöberg B; Ligaarden R; Elias P Eur J Biochem; 1981 Jun; 117(1):155-9. PubMed ID: 7021154 [TBL] [Abstract][Full Text] [Related]
7. Visualization of a ternary complex of the Escherichia coli Phe-tRNA(Phe) and Tu.GTP from Thermus thermophilus by scanning transmission electron microscopy. Blechschmidt B; Jahn W; Hainfeld JF; Sprinzl M; Boublik M J Struct Biol; 1993; 110(1):84-9. PubMed ID: 8494675 [TBL] [Abstract][Full Text] [Related]
8. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
9. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome. Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868 [TBL] [Abstract][Full Text] [Related]
10. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes. Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042 [TBL] [Abstract][Full Text] [Related]
11. Modification of amino groups in EF-Tu.GTP and the ternary complex EF-Tu.GTP.valyl-tRNAVal. Antonsson B; Leberman R Eur J Biochem; 1984 Jun; 141(3):483-7. PubMed ID: 6430701 [TBL] [Abstract][Full Text] [Related]
12. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. Pape T; Wintermeyer W; Rodnina MV EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203 [TBL] [Abstract][Full Text] [Related]
13. Altered lead(II)-cleavage pattern of free Phe-tRNAPhe and Phe-tRNAPhe in ternary complex with EF-Tu:GTP. Otzen DE; Barciszewski J; Clark BF Biochem Mol Biol Int; 1993 Sep; 31(1):95-103. PubMed ID: 8260950 [TBL] [Abstract][Full Text] [Related]
14. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity. Hunter SE; Spremulli LL Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329 [TBL] [Abstract][Full Text] [Related]
15. Purification of aminoacyl-tRNA by affinity chromatography on immobilized Thermus thermophilus EF-Tu.GTP. Ribeiro S; Nock S; Sprinzl M Anal Biochem; 1995 Jul; 228(2):330-5. PubMed ID: 8572315 [TBL] [Abstract][Full Text] [Related]
16. Antibiotics MDL 62,879 and kirromycin bind to distinct and independent sites of elongation factor Tu (EF-Tu). Landini P; Soffientini A; Monti F; Lociuro S; Marzorati E; Islam K Biochemistry; 1996 Dec; 35(48):15288-94. PubMed ID: 8952479 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA. Barends S; Karzai AW; Sauer RT; Wower J; Kraal B J Mol Biol; 2001 Nov; 314(1):9-21. PubMed ID: 11724528 [TBL] [Abstract][Full Text] [Related]
18. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function. Saarma U; Remme J; Ehrenberg M; Bilgin N J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093 [TBL] [Abstract][Full Text] [Related]
19. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
20. Stabilization of the ternary complex EF-Tu.GTP.valyl-tRNAval by ammonium salts. Antonsson B; Leberman R Biochimie; 1982; 64(11-12):1035-40. PubMed ID: 6819001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]