These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32714732)

  • 1. Electron Microburst Size Distribution Derived With AeroCube-6.
    Shumko M; Johnson AT; Sample JG; Griffith BA; Turner DL; O'Brien TP; Agapitov O; Blake JB; Claudepierre SG
    J Geophys Res Space Phys; 2020 Mar; 125(3):e2019JA027651. PubMed ID: 32714732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the Size and Duration of a Microburst-Producing Chorus Region on 5 December 2017.
    Elliott SS; Breneman AW; Colpitts C; Pettit JM; Cattell CA; Halford AJ; Shumko M; Sample J; Johnson AT; Miyoshi Y; Kasahara Y; Cully CM; Nakamura S; Mitani T; Hori T; Shinohara I; Shiokawa K; Matsuda S; Connors M; Ozaki M; Manninen J
    Geophys Res Lett; 2022 Aug; 49(15):e2022GL099655. PubMed ID: 36247517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical Properties of Electron Curtain Precipitation Estimated With AeroCube-6.
    Shumko M; Johnson AT; O'Brien TP; Turner DL; Greeley AD; Sample JG; Blake JB; Blum LW; Halford AJ
    J Geophys Res Space Phys; 2020 Dec; 125(12):e2020JA028462. PubMed ID: 33520562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ELFIN Mission.
    Angelopoulos V; Tsai E; Bingley L; Shaffer C; Turner DL; Runov A; Li W; Liu J; Artemyev AV; Zhang XJ; Strangeway RJ; Wirz RE; Shprits YY; Sergeev VA; Caron RP; Chung M; Cruce P; Greer W; Grimes E; Hector K; Lawson MJ; Leneman D; Masongsong EV; Russell CL; Wilkins C; Hinkley D; Blake JB; Adair N; Allen M; Anderson M; Arreola-Zamora M; Artinger J; Asher J; Branchevsky D; Capitelli MR; Castro R; Chao G; Chung N; Cliffe M; Colton K; Costello C; Depe D; Domae BW; Eldin S; Fitzgibbon L; Flemming A; Fox I; Frederick DM; Gilbert A; Gildemeister A; Gonzalez A; Hesford B; Jha S; Kang N; King J; Krieger R; Lian K; Mao J; McKinney E; Miller JP; Norris A; Nuesca M; Palla A; Park ESY; Pedersen CE; Qu Z; Rozario R; Rye E; Seaton R; Subramanian A; Sundin SR; Tan A; Turner W; Villegas AJ; Wasden M; Wing G; Wong C; Xie E; Yamamoto S; Yap R; Zarifian A; Zhang GY
    Space Sci Rev; 2020; 216(5):103. PubMed ID: 32831412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Electron Acceleration in Low-Density Regions of Saturn's Radiation Belt by Whistler Mode Chorus Waves.
    Woodfield EE; Glauert SA; Menietti JD; Averkamp TF; Horne RB; Shprits YY
    Geophys Res Lett; 2019 Jul; 46(13):7191-7198. PubMed ID: 31598019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FIREBIRD-II CubeSat mission: Focused investigations of relativistic electron burst intensity, range, and dynamics.
    Johnson AT; Shumko M; Griffith B; Klumpar DM; Sample J; Springer L; Leh N; Spence HE; Smith S; Crew A; Handley M; Mashburn KM; Larsen BA; Blake JB
    Rev Sci Instrum; 2020 Mar; 91(3):034503. PubMed ID: 32260014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of Electrons by Whistler-Mode Hiss Waves at Saturn.
    Woodfield EE; Glauert SA; Menietti JD; Horne RB; Kavanagh AJ; Shprits YY
    Geophys Res Lett; 2022 Feb; 49(3):e2021GL096213. PubMed ID: 35864852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On How High-Latitude Chorus Waves Tip the Balance Between Acceleration and Loss of Relativistic Electrons.
    Wang D; Shprits YY
    Geophys Res Lett; 2019 Jul; 46(14):7945-7954. PubMed ID: 31749506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN's Low Altitude Perspective.
    Angelopoulos V; Zhang XJ; Artemyev AV; Mourenas D; Tsai E; Wilkins C; Runov A; Liu J; Turner DL; Li W; Khurana K; Wirz RE; Sergeev VA; Meng X; Wu J; Hartinger MD; Raita T; Shen Y; An X; Shi X; Bashir MF; Shen X; Gan L; Qin M; Capannolo L; Ma Q; Russell CL; Masongsong EV; Caron R; He I; Iglesias L; Jha S; King J; Kumar S; Le K; Mao J; McDermott A; Nguyen K; Norris A; Palla A; Roosnovo A; Tam J; Xie E; Yap RC; Ye S; Young C; Adair LA; Shaffer C; Chung M; Cruce P; Lawson M; Leneman D; Allen M; Anderson M; Arreola-Zamora M; Artinger J; Asher J; Branchevsky D; Cliffe M; Colton K; Costello C; Depe D; Domae BW; Eldin S; Fitzgibbon L; Flemming A; Frederick DM; Gilbert A; Hesford B; Krieger R; Lian K; McKinney E; Miller JP; Pedersen C; Qu Z; Rozario R; Rubly M; Seaton R; Subramanian A; Sundin SR; Tan A; Thomlinson D; Turner W; Wing G; Wong C; Zarifian A
    Space Sci Rev; 2023; 219(5):37. PubMed ID: 37448777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study.
    Cattell CA; Breneman AW; Thaller SA; Wygant JR; Kletzing CA; Kurth WS
    Geophys Res Lett; 2015 Sep; 42(18):7273-7281. PubMed ID: 27667871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superfast precipitation of energetic electrons in the radiation belts of the Earth.
    Zhang XJ; Artemyev A; Angelopoulos V; Tsai E; Wilkins C; Kasahara S; Mourenas D; Yokota S; Keika K; Hori T; Miyoshi Y; Shinohara I; Matsuoka A
    Nat Commun; 2022 Mar; 13(1):1611. PubMed ID: 35338136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation.
    Thorne RM; Ni B; Tao X; Horne RB; Meredith NP
    Nature; 2010 Oct; 467(7318):943-6. PubMed ID: 20962841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of Chirping Whistler Waves in a Laboratory Plasma.
    Van Compernolle B; An X; Bortnik J; Thorne RM; Pribyl P; Gekelman W
    Phys Rev Lett; 2015 Jun; 114(24):245002. PubMed ID: 26196981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global model of low-frequency chorus (
    Meredith NP; Horne RB; Li W; Thorne RM; Sicard-Piet A
    Geophys Res Lett; 2014 Jan; 41(2):280-286. PubMed ID: 25821274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and Loss of Ring Current Electrons Inside Geosynchronous Orbit During the 17 March 2013 Storm.
    Aseev NA; Shprits YY; Wang D; Wygant J; Drozdov AY; Kellerman AC; Reeves GD
    J Geophys Res Space Phys; 2019 Feb; 124(2):915-933. PubMed ID: 31008006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes.
    Hartley DP; Chen Y; Kletzing CA; Denton MH; Kurth WS
    J Geophys Res Space Phys; 2015 Feb; 120(2):1144-1152. PubMed ID: 26167444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsating aurora from electron scattering by chorus waves.
    Kasahara S; Miyoshi Y; Yokota S; Mitani T; Kasahara Y; Matsuda S; Kumamoto A; Matsuoka A; Kazama Y; Frey HU; Angelopoulos V; Kurita S; Keika K; Seki K; Shinohara I
    Nature; 2018 Feb; 554(7692):337-340. PubMed ID: 29446380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extreme Energy Spectra of Relativistic Electron Flux in the Outer Radiation Belt.
    Mourenas D; Artemyev AV; Zhang XJ; Angelopoulos V
    J Geophys Res Space Phys; 2022 Nov; 127(11):e2022JA031038. PubMed ID: 36591600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristic of the radiation field in low Earth orbit and in deep space.
    Reitz G
    Z Med Phys; 2008; 18(4):233-43. PubMed ID: 19205293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.