These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32714914)

  • 21. Promoter Architecture and Promoter Engineering in
    Tang H; Wu Y; Deng J; Chen N; Zheng Z; Wei Y; Luo X; Keasling JD
    Metabolites; 2020 Aug; 10(8):. PubMed ID: 32781665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in yeast genome engineering.
    David F; Siewers V
    FEMS Yeast Res; 2015 Feb; 15(1):1-14. PubMed ID: 25154295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.
    Paramasivan K; Mutturi S
    Crit Rev Biotechnol; 2017 Dec; 37(8):974-989. PubMed ID: 28427280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System.
    Lian J; HamediRad M; Zhao H
    Biotechnol J; 2018 Sep; 13(9):e1700601. PubMed ID: 29436783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.
    Siddiqui MS; Thodey K; Trenchard I; Smolke CD
    FEMS Yeast Res; 2012 Mar; 12(2):144-70. PubMed ID: 22136110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in
    Wang G; Björk SM; Huang M; Liu Q; Campbell K; Nielsen J; Joensson HN; Petranovic D
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9324-9332. PubMed ID: 31000602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
    Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS
    Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology.
    Schindler D
    Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33138080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting Mosquitoes through Generation of an Insecticidal RNAi Yeast Strain Using Cas-CLOVER and Super PiggyBac Engineering in
    Brizzee C; Mysore K; Njoroge TM; McConnell S; Hamid-Adiamoh M; Stewart ATM; Kinder JT; Crawford J; Duman-Scheel M
    J Fungi (Basel); 2023 Oct; 9(11):. PubMed ID: 37998862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.
    Lane S; Dong J; Jin YS
    Bioresour Technol; 2018 Jul; 260():380-394. PubMed ID: 29655899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.
    Li M; Borodina I
    FEMS Yeast Res; 2015 Feb; 15(1):1-12. PubMed ID: 25238571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.
    Lee JJ; Crook N; Sun J; Alper HS
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):87-96. PubMed ID: 26660479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 34. GroE chaperonins assisted functional expression of bacterial enzymes in Saccharomyces cerevisiae.
    Xia PF; Zhang GC; Liu JJ; Kwak S; Tsai CS; Kong II; Sung BH; Sohn JH; Wang SG; Jin YS
    Biotechnol Bioeng; 2016 Oct; 113(10):2149-55. PubMed ID: 27003667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic biology toolkits and applications in Saccharomyces cerevisiae.
    Chen B; Lee HL; Heng YC; Chua N; Teo WS; Choi WJ; Leong SSJ; Foo JL; Chang MW
    Biotechnol Adv; 2018 Nov; 36(7):1870-1881. PubMed ID: 30031049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?
    Taylor J; Woodcock S
    J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae.
    Williams TC; Espinosa MI; Nielsen LK; Vickers CE
    Microb Cell Fact; 2015 Apr; 14():43. PubMed ID: 25886317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards full employment: using RNAi to find roles for the redundant.
    Fraser A
    Oncogene; 2004 Nov; 23(51):8346-52. PubMed ID: 15517015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.