These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32714914)

  • 41. Towards full employment: using RNAi to find roles for the redundant.
    Fraser A
    Oncogene; 2004 Nov; 23(51):8346-52. PubMed ID: 15517015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heterologous expression of MlcE in
    Ley A; Coumou HC; Frandsen RJN
    Metab Eng Commun; 2015 Dec; 2():117-123. PubMed ID: 34150514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic engineering of
    Wang S; Zhao F; Yang M; Lin Y; Han S
    Crit Rev Biotechnol; 2024 Mar; 44(2):163-190. PubMed ID: 36596577
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons.
    Zhang Y; Nielsen J; Liu Z
    Biotechnol Bioeng; 2018 Sep; 115(9):2139-2147. PubMed ID: 29873064
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heterologous production of levopimaric acid in Saccharomyces cerevisiae.
    Liu T; Zhang C; Lu W
    Microb Cell Fact; 2018 Jul; 17(1):114. PubMed ID: 30021574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae.
    Solis-Escalante D; Kuijpers NG; van der Linden FH; Pronk JT; Daran JM; Daran-Lapujade P
    FEMS Yeast Res; 2014 Aug; 14(5):741-54. PubMed ID: 24833416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Biotechnol J; 2015 Apr; 10(4):575-83. PubMed ID: 25651533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biosensors design in yeast and applications in metabolic engineering.
    Qiu C; Zhai H; Hou J
    FEMS Yeast Res; 2019 Dec; 19(8):. PubMed ID: 31778177
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNAi applications in target validation.
    Kourtidis A; Eifert C; Conklin DS
    Ernst Schering Res Found Workshop; 2007; (61):1-21. PubMed ID: 17249494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals.
    Hu Y; Zhu Z; Nielsen J; Siewers V
    Open Biol; 2019 May; 9(5):190049. PubMed ID: 31088249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae.
    Nielsen J; Jewett MC
    FEMS Yeast Res; 2008 Feb; 8(1):122-31. PubMed ID: 17727659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.
    de Jong BW; Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):477-86. PubMed ID: 25422103
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benchmarking two
    Espinosa MI; Williams TC; Pretorius IS; Paulsen IT
    Synth Syst Biotechnol; 2019 Dec; 4(4):180-188. PubMed ID: 31667368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring the Formation of Autophagosomal Precursor Structures in Yeast Saccharomyces cerevisiae.
    Gómez-Sánchez R; Sánchez-Wandelmer J; Reggiori F
    Methods Enzymol; 2017; 588():323-365. PubMed ID: 28237109
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA Interference (RNAi) Screening in
    Heigwer F; Port F; Boutros M
    Genetics; 2018 Mar; 208(3):853-874. PubMed ID: 29487145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.