These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32714918)

  • 41. Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases.
    Möller J; Bartsch A; Lenz M; Tischoff I; Krug R; Welp H; Hofmann MR; Schmieder K; Miller D
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1517-1526. PubMed ID: 34053010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution CT imaging of carotid artery atherosclerotic plaques.
    Wintermark M; Jawadi SS; Rapp JH; Tihan T; Tong E; Glidden DV; Abedin S; Schaeffer S; Acevedo-Bolton G; Boudignon B; Orwoll B; Pan X; Saloner D
    AJNR Am J Neuroradiol; 2008 May; 29(5):875-82. PubMed ID: 18272562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography.
    Shimamura K; Kubo T; Akasaka T
    Expert Rev Cardiovasc Ther; 2021 May; 19(5):379-386. PubMed ID: 33823735
    [No Abstract]   [Full Text] [Related]  

  • 44. Automatic classification of atherosclerotic plaques imaged with intravascular OCT.
    Rico-Jimenez JJ; Campos-Delgado DU; Villiger M; Otsuka K; Bouma BE; Jo JA
    Biomed Opt Express; 2016 Oct; 7(10):4069-4085. PubMed ID: 27867716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CT angiography-based radiomics as a tool for carotid plaque characterization: a pilot study.
    Cilla S; Macchia G; Lenkowicz J; Tran EH; Pierro A; Petrella L; Fanelli M; Sardu C; Re A; Boldrini L; Indovina L; De Filippo CM; Caradonna E; Deodato F; Massetti M; Valentini V; Modugno P
    Radiol Med; 2022 Jul; 127(7):743-753. PubMed ID: 35680773
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heavy macrophage infiltration identified by optical coherence tomography relates to plaque rupture.
    Shi X; Tao T; Wang Y; Han Y; Xu X; Yin Q; Wang F; Liu R; Liu X
    Ann Clin Transl Neurol; 2023 Dec; 10(12):2334-2346. PubMed ID: 37822283
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology.
    Barreto M; Schoenhagen P; Nair A; Amatangelo S; Milite M; Obuchowski NA; Lieber ML; Halliburton SS
    J Cardiovasc Comput Tomogr; 2008; 2(4):234-42. PubMed ID: 19083956
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Optical Coherence Tomography Assessment of Stent Strut Apposition Based on the Presence of Lipid-Rich Plaque in the Carotid Artery.
    Liu R; Jiang Y; Xiong Y; Li M; Ma M; Zhu W; Yin Q; Li W; Xu G; Liu X
    J Endovasc Ther; 2015 Dec; 22(6):942-9. PubMed ID: 26464412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Validation of Noninvasive In Vivo Compound Ultrasound Strain Imaging Using Histologic Plaque Vulnerability Features.
    Hansen HH; de Borst GJ; Bots ML; Moll FL; Pasterkamp G; de Korte CL
    Stroke; 2016 Nov; 47(11):2770-2775. PubMed ID: 27686104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated lipid-rich plaque detection with short wavelength infra-red OCT system.
    Shimokado A; Kubo T; Nishiguchi T; Katayama Y; Taruya A; Ohta S; Kashiwagi M; Shimamura K; Kuroi A; Kameyama T; Shiono Y; Yamano T; Matsuo Y; Kitabata H; Ino Y; Hozumi T; Tanaka A; Akasaka T
    Eur Heart J Cardiovasc Imaging; 2018 Oct; 19(10):1174-1178. PubMed ID: 29186546
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization.
    Shinnar M; Fallon JT; Wehrli S; Levin M; Dalmacy D; Fayad ZA; Badimon JJ; Harrington M; Harrington E; Fuster V
    Arterioscler Thromb Vasc Biol; 1999 Nov; 19(11):2756-61. PubMed ID: 10559022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography.
    Raffel OC; Merchant FM; Tearney GJ; Chia S; Gauthier DD; Pomerantsev E; Mizuno K; Bouma BE; Jang IK
    Eur Heart J; 2008 Jul; 29(14):1721-8. PubMed ID: 18577556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography.
    Cilingiroglu M; Oh JH; Sugunan B; Kemp NJ; Kim J; Lee S; Zaatari HN; Escobedo D; Thomsen S; Milner TE; Feldman MD
    Catheter Cardiovasc Interv; 2006 Jun; 67(6):915-23. PubMed ID: 16602128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-resolution multicontrast-weighted MR imaging from human carotid endarterectomy specimens to assess carotid plaque components.
    Fabiano S; Mancino S; Stefanini M; Chiocchi M; Mauriello A; Spagnoli LG; Simonetti G
    Eur Radiol; 2008 Dec; 18(12):2912-21. PubMed ID: 18751713
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diagnostic accuracy of dual-source computed tomography in the characterization of coronary atherosclerotic plaques: comparison with intravascular optical coherence tomography.
    Soeda T; Uemura S; Morikawa Y; Ishigami K; Okayama S; Hee SJ; Nishida T; Onoue K; Somekawa S; Takeda Y; Kawata H; Horii M; Saito Y
    Int J Cardiol; 2011 May; 148(3):313-8. PubMed ID: 20004985
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-invasive in vivo characterization of human carotid plaques with acoustic radiation force impulse ultrasound: comparison with histology after endarterectomy.
    Czernuszewicz TJ; Homeister JW; Caughey MC; Farber MA; Fulton JJ; Ford PF; Marston WA; Vallabhaneni R; Nichols TC; Gallippi CM
    Ultrasound Med Biol; 2015 Mar; 41(3):685-97. PubMed ID: 25619778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology.
    Araki T; Ikeda N; Shukla D; Jain PK; Londhe ND; Shrivastava VK; Banchhor SK; Saba L; Nicolaides A; Shafique S; Laird JR; Suri JS
    Comput Methods Programs Biomed; 2016 May; 128():137-58. PubMed ID: 27040838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography.
    van der Meer FJ; Faber DJ; Baraznji Sassoon DM; Aalders MC; Pasterkamp G; van Leeuwen TG
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1369-76. PubMed ID: 16229422
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atherosclerotic plaque features relevant to rupture-risk detected by clinical photon-counting CT ex vivo: a proof-of-concept study.
    Shami A; Sun J; Gialeli C; Markstad H; Edsfeldt A; Aurumskjöld ML; Gonçalves I
    Eur Radiol Exp; 2024 Jan; 8(1):14. PubMed ID: 38286959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.