BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3271497)

  • 1. Theoretical study of the sequence selectivity of isolexins, isohelical DNA groove binding ligands. Proposal for the GC minor groove specific compounds.
    Zakrzewska K; Pullman B
    J Biomol Struct Dyn; 1988 Apr; 5(5):1043-58. PubMed ID: 3271497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug recognition of DNA. Proposal for GC minor groove specific ligands: vinylexins.
    Zakrzewska K; Randrianarivelo M; Pullman B
    J Biomol Struct Dyn; 1988 Oct; 6(2):331-44. PubMed ID: 2856036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isohelical analysis of DNA groove-binding drugs.
    Goodsell D; Dickerson RE
    J Med Chem; 1986 May; 29(5):727-33. PubMed ID: 2422377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of sequence-specific DNA binding ligands that use a two-stranded peptide motif for DNA sequence recognition.
    Nikolaev VA; Grokhovsky SL; Surovaya AN; Leinsoo TA; Sidorova NYu ; Zasedatelev AS; Zhuze AL; Strahan GA; Shafer RH; Gursky GV
    J Biomol Struct Dyn; 1996 Aug; 14(1):31-47. PubMed ID: 8877560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative thermodynamics for monomer and dimer sequence-dependent binding of a heterocyclic dication in the DNA minor groove.
    Wang L; Kumar A; Boykin DW; Bailly C; Wilson WD
    J Mol Biol; 2002 Mar; 317(3):361-74. PubMed ID: 11922670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive binding geometry of ligands to DNA minor groove: isohelicity and hydrogen-bonding pattern.
    Stockert JC
    Methods Mol Biol; 2014; 1094():1-12. PubMed ID: 24162975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial determination of sequence specificity for nanomolar DNA-binding hairpin polyamides.
    Vashisht Gopal YN; Van Dyke MW
    Biochemistry; 2003 Jun; 42(22):6891-903. PubMed ID: 12779344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA sequence recognition by a novel series of minor groove-binding ligands.
    Fox KR; Yan Y; Gong B
    Anticancer Drug Des; 1999 Jun; 14(3):219-30. PubMed ID: 10500497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA minor groove recognition by bis-benzimidazole analogues of Hoechst 33258: insights into structure-DNA affinity relationships assessed by fluorescence titration measurements.
    Bostock-Smith CE; Searle MS
    Nucleic Acids Res; 1999 Apr; 27(7):1619-24. PubMed ID: 10075992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Head-to-head bis-hairpin polyamide minor groove binders and their conjugates with triplex-forming oligonucleotides: studies of interaction with target double-stranded DNA.
    Halby L; Ryabinin VA; Sinyakov AN; Novopashina DS; Venyaminova AG; Grokhovsky SL; Surovaya AN; Gursky GV; Boutorine AS
    J Biomol Struct Dyn; 2007 Aug; 25(1):61-76. PubMed ID: 17676939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of compound structure on affinity, sequence selectivity, and mode of binding to DNA for unfused aromatic dications related to furamidine.
    Nguyen B; Tardy C; Bailly C; Colson P; Houssier C; Kumar A; Boykin DW; Wilson WD
    Biopolymers; 2002 Apr; 63(5):281-97. PubMed ID: 11877739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of ligand tails for interaction with the minor groove of B-DNA.
    Wellenzohn B; Flader W; Winger RH; Hallbrucker A; Mayer E; Liedl KR
    Biophys J; 2001 Sep; 81(3):1588-99. PubMed ID: 11509372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of netropsin to several DNA constructs: evidence for at least two different 1:1 complexes formed from an -AATT-containing ds-DNA construct and a single minor groove binding ligand.
    Freyer MW; Buscaglia R; Cashman D; Hyslop S; Wilson WD; Chaires JB; Lewis EA
    Biophys Chem; 2007 Mar; 126(1-3):186-96. PubMed ID: 16837123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural analysis of the binding modes of minor groove ligands comprised of disubstituted benzenes.
    Hawkins CA; Watson C; Yan Y; Gong B; Wemmer DE
    Nucleic Acids Res; 2001 Feb; 29(4):936-42. PubMed ID: 11160926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A crystallographic and spectroscopic study of the complex between d(CGCGAATTCGCG)2 and 2,5-bis(4-guanylphenyl)furan, an analogue of berenil. Structural origins of enhanced DNA-binding affinity.
    Laughton CA; Tanious F; Nunn CM; Boykin DW; Wilson WD; Neidle S
    Biochemistry; 1996 May; 35(18):5655-61. PubMed ID: 8639524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition between oligopeptides and nucleic acids: DNA sequence specificity and binding properties of thiazole-lexitropsins incorporating the concepts of base site acceptance and avoidance.
    Rao KE; Shea RG; Yadagiri B; Lown JW
    Anticancer Drug Des; 1990 Feb; 5(1):3-20. PubMed ID: 2156516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium.
    Chiu TK; Dickerson RE
    J Mol Biol; 2000 Aug; 301(4):915-45. PubMed ID: 10966796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the interaction of DAPI with DNA containing AT and non-AT sequences--molecular specificity of minor groove binding drugs.
    Mohan S; Yathindra N
    J Biomol Struct Dyn; 1994 Feb; 11(4):849-67. PubMed ID: 8204219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of GC and AT specific DNA minor groove binding drugs on intermolecular triplex formation in the human c-Ki-ras promoter.
    Vigneswaran N; Mayfield CA; Rodu B; James R; Kim HG; Miller DM
    Biochemistry; 1996 Jan; 35(4):1106-14. PubMed ID: 8573565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA sequence recognition by the antitumor drug ditercalinium.
    Crow SD; Bailly C; Garbay-Jaureguiberry C; Roques B; Shaw BR; Waring MJ
    Biochemistry; 2002 Jul; 41(27):8672-82. PubMed ID: 12093285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.