These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 3271518)

  • 1. On the occurrence of three-center hydrogen bonds in cyclodextrins in crystalline form and in aqueous solution: comparison of neutron diffraction and molecular dynamics results.
    Koehler JE; Saenger W; van Gunsteren WF
    J Biomol Struct Dyn; 1988 Aug; 6(1):181-98. PubMed ID: 3271518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational differences between alpha-cyclodextrin in aqueous solution and in crystalline form. A molecular dynamics study.
    Koehler JE; Saenger W; van Gunsteren WF
    J Mol Biol; 1988 Sep; 203(1):241-50. PubMed ID: 3184189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron diffraction of alpha, beta and gamma cyclodextrins: hydrogen bonding patterns.
    Hingerty B; Klar B; Hardgrove GL; Betzel C; Saenger W
    J Biomol Struct Dyn; 1984 Aug; 2(1):249-60. PubMed ID: 6401129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A molecular dynamics simulation of crystalline alpha-cyclodextrin hexahydrate.
    Koehler JE; Saenger W; van Gunsteren WF
    Eur Biophys J; 1987; 15(4):197-210. PubMed ID: 3428243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of crystalline beta-cyclodextrin dodecahydrate at 293 K and 120 K.
    Koehler JE; Saenger W; van Gunsteren WF
    Eur Biophys J; 1987; 15(4):211-24. PubMed ID: 3428244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereochemistry of circularly closed oligosaccharides: cyclodextrin structure and function.
    Saenger W
    Biochem Soc Trans; 1983 Apr; 11 Pt 2():136-9. PubMed ID: 6873451
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular dynamics simulations of beta-cyclodextrin in aqueous solution.
    Lawtrakul L; Viernstein H; Wolschann P
    Int J Pharm; 2003 Apr; 256(1-2):33-41. PubMed ID: 12695009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecular dynamics study of branched alpha-cyclodextrin.
    Amisaki T; Fujiwara T; Kobayashi S
    J Mol Graph; 1994 Dec; 12(4):297-301, 294. PubMed ID: 7696221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of inclusion complexes of cyclomaltoheptaose (cycloheptaamylose): crystal structure of the 1-adamantanemethanol adduct.
    Hamilton JA
    Carbohydr Res; 1985 Oct; 142(1):21-37. PubMed ID: 4075327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of aqueous glucose solutions as determined by neutron diffraction with isotopic substitution experiments and molecular dynamics calculations.
    Mason PE; Neilson GW; Enderby JE; Saboungi ML; Brady JW
    J Phys Chem B; 2005 Jul; 109(27):13104-11. PubMed ID: 16852630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of deceleration by methylated cyclodextrins in the dehydration of prostaglandin E2 and the isomerization of prostaglandin A2 in aqueous solution.
    Hirayama F; Kurihara M; Uekama K
    Chem Pharm Bull (Tokyo); 1986 Dec; 34(12):5093-101. PubMed ID: 3471361
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetics of hydrogen bonds in aqueous solutions of cyclodextrin and its methyl-substituted forms.
    Jana M; Bandyopadhyay S
    J Chem Phys; 2011 Jan; 134(2):025103. PubMed ID: 21241151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of a three-heptad coiled-coil protein and comparison by molecular dynamics simulation with the GCN4 coiled coil: presence of interior three-center hydrogen bonds.
    Rozzelle JE; Tropsha A; Erickson BW
    Protein Sci; 1994 Feb; 3(2):345-55. PubMed ID: 8003969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating a strategy for molecular dynamics simulations of cyclodextrin inclusion complexes through single-crystal X-ray and NMR experimental data: a case study.
    Raffaini G; Ganazzoli F; Malpezzi L; Fuganti C; Fronza G; Panzeri W; Mele A
    J Phys Chem B; 2009 Jul; 113(27):9110-22. PubMed ID: 19526998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of uncomplexed-hydrated cyclooctaamylose.
    Maclennan JM; Stezowski JJ
    Biochem Biophys Res Commun; 1980 Feb; 92(3):926-32. PubMed ID: 7362615
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of properties of Aib-rich peptides in crystal and solution: a molecular dynamics study.
    Yu H; Ramseier M; Bürgi R; van Gunsteren WF
    Chemphyschem; 2004 May; 5(5):633-41. PubMed ID: 15179715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding water: molecular dynamics simulations of myoglobin.
    Gu W; Garcia AE; Schoenborn BP
    Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different mode of prednisolone within alpha-, beta-, and gamma-cyclodextrins in aqueous solution and in solid state.
    Uekama K; Sakai A; Arimori K; Otagiri M; Saitô H
    Pharm Acta Helv; 1985; 60(4):117-21. PubMed ID: 4011623
    [No Abstract]   [Full Text] [Related]  

  • 20. Aggregation of amphotericin B in the presence of gamma-cyclodextrin.
    Kajtár M; Vikmon M; Morlin E; Szejtli J
    Biopolymers; 1989 Sep; 28(9):1585-96. PubMed ID: 2775849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.