BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32715190)

  • 1. Influence of Oxygen on Hg
    Ambrosy JM; Pasel C; Luckas M; Bittig M; Bathen D
    ACS Omega; 2020 Jul; 5(28):17051-17061. PubMed ID: 32715190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of H
    Steinhaus J; Pasel C; Bläker C; Bathen D
    ACS Omega; 2021 Jul; 6(26):16989-17001. PubMed ID: 34250357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Mercury on Chlorine-Modified Activated Carbon: Breakthrough Curves and Temperature-Programmed Desorption.
    Steinhaus J; Pasel C; Bläker C; Bathen D
    ACS Omega; 2022 Jul; 7(27):23833-23841. PubMed ID: 35847274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver impregnated carbon for adsorption and desorption of elemental mercury vapors.
    Karatza D; Prisciandaro M; Lancia A; Musmarra D
    J Environ Sci (China); 2011; 23(9):1578-84. PubMed ID: 22432297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of surface heterogeneity on mercury uptake by carbonaceous sorbents under UHV and atmospheric pressure.
    Kwon S; Borguet E; Vidic RD
    Environ Sci Technol; 2002 Oct; 36(19):4162-9. PubMed ID: 12380090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.
    Skodras G; Diamantopoulou I; Pantoleontos G; Sakellaropoulos GP
    J Hazard Mater; 2008 Oct; 158(1):1-13. PubMed ID: 18321645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of adsorption sites on IrO
    Ocampo-Restrepo VK; Vijay S; Gunasooriya GTKK; Nørskov JK
    Phys Chem Chem Phys; 2024 Jun; 26(24):17396-17404. PubMed ID: 38860930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies.
    Anoop Krishnan K; Anirudhan TS
    J Hazard Mater; 2002 May; 92(2):161-83. PubMed ID: 11992701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficient adsorption and removal of elemental mercury from smelting flue gas by cobalt sulfide.
    Liu H; You Z; Yang S; Liu C; Xie X; Xiang K; Wang X; Yan X
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6735-6744. PubMed ID: 30632039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors Influencing NO₂ Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry.
    Ghouma I; Jeguirim M; Limousy L; Bader N; Ouederni A; Bennici S
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29670008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Temperature-Programmed Desorption via Equilibrium Thermodynamics.
    Schmid M; Parkinson GS; Diebold U
    ACS Phys Chem Au; 2023 Jan; 3(1):44-62. PubMed ID: 36718262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiform Sulfur Adsorption Centers and Copper-Terminated Active Sites of Nano-CuS for Efficient Elemental Mercury Capture from Coal Combustion Flue Gas.
    Yang Z; Li H; Feng S; Li P; Liao C; Liu X; Zhao J; Yang J; Lee PH; Shih K
    Langmuir; 2018 Jul; 34(30):8739-8749. PubMed ID: 29983072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting adsorption isotherms of low-volatile compounds by temperature programmed desorption: iodine on carbon.
    Park JH; Yang RT
    Langmuir; 2005 May; 21(11):5055-60. PubMed ID: 15896050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature catalytic adsorption of NO on activated carbon materials.
    López D; Buitrago R; Sepúlveda-Escribano A; Rodríguez-Reinoso F; Mondragón F
    Langmuir; 2007 Nov; 23(24):12131-7. PubMed ID: 17960942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Nano-Sulfide Sorbent for Efficient Removal of Elemental Mercury from Coal Combustion Fuel Gas.
    Li H; Zhu L; Wang J; Li L; Shih K
    Environ Sci Technol; 2016 Sep; 50(17):9551-7. PubMed ID: 27508312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4.
    Guo J; Xu WS; Chen YL; Lua AC
    J Colloid Interface Sci; 2005 Jan; 281(2):285-90. PubMed ID: 15571683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Hg(0) oxidation in the presence of HCl over a commercial V2O5-WO3/TiO2 SCR catalyst.
    Liu R; Xu W; Tong L; Zhu T
    J Environ Sci (China); 2015 Oct; 36():76-83. PubMed ID: 26456609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions.
    Lu X; Jiang J; Sun K; Wang J; Zhang Y
    Mar Pollut Bull; 2014 Jan; 78(1-2):69-76. PubMed ID: 24286751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen sorption and desorption properties of selected lanthanum manganites and lanthanum ferrite manganites.
    Nielsen J; Skou EM; Jacobsen T
    Chemphyschem; 2015 Jun; 16(8):1635-45. PubMed ID: 25784205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.