These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 32715198)
1. Polyelectrolyte Complex Coacervate Assembly with Cellulose Nanofibers. Khan N; Zaragoza NZ; Travis CE; Goswami M; Brettmann BK ACS Omega; 2020 Jul; 5(28):17129-17140. PubMed ID: 32715198 [TBL] [Abstract][Full Text] [Related]
2. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Kim S; Huang J; Lee Y; Dutta S; Yoo HY; Jung YM; Jho Y; Zeng H; Hwang DS Proc Natl Acad Sci U S A; 2016 Feb; 113(7):E847-53. PubMed ID: 26831090 [TBL] [Abstract][Full Text] [Related]
3. Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes. Rubinstein M; Liao Q; Panyukov S Macromolecules; 2018 Dec; 51(23):9572-9588. PubMed ID: 30853717 [TBL] [Abstract][Full Text] [Related]
4. Efficient Synthesis of Stable Polyelectrolyte Complex Nanoparticles by Electrostatic Assembly Directed Polymerization. Ding P; Chen L; Wei C; Zhou W; Li C; Wang J; Wang M; Guo X; Cohen Stuart MA; Wang J Macromol Rapid Commun; 2021 Feb; 42(4):e2000635. PubMed ID: 33368740 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes. Aponte-Rivera C; Rubinstein M Macromolecules; 2021 Feb; 54(4):1783-1800. PubMed ID: 33981120 [TBL] [Abstract][Full Text] [Related]
6. Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates. Sun J; Perry SL; Schiffman JD Biomacromolecules; 2019 Nov; 20(11):4191-4198. PubMed ID: 31613600 [TBL] [Abstract][Full Text] [Related]
7. Engineering the Coacervate Microdroplet Interface via Polyelectrolyte and Surfactant Complexation. Yin C; Lin Z; Jiang X; Martin N; Tian L ACS Appl Mater Interfaces; 2023 Jun; 15(23):27447-27456. PubMed ID: 37272663 [TBL] [Abstract][Full Text] [Related]
8. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates: Insights from Molecular Simulations. Yu B; Liang H; Nealey PF; Tirrell MV; Rumyantsev AM; de Pablo JJ Macromolecules; 2023 Sep; 56(18):7256-7270. PubMed ID: 37781214 [TBL] [Abstract][Full Text] [Related]
9. Molecular and structural basis of low interfacial energy of complex coacervates in water. Jho Y; Yoo HY; Lin Y; Han S; Hwang DS Adv Colloid Interface Sci; 2017 Jan; 239():61-73. PubMed ID: 27499328 [TBL] [Abstract][Full Text] [Related]
10. Supramolecular tripeptide self-assembly initiated at the surface of coacervates by polyelectrolyte exchange. Criado-Gonzalez M; Wagner D; Iqbal MH; Ontani A; Carvalho A; Schmutz M; Schlenoff JB; Schaaf P; Jierry L; Boulmedais F J Colloid Interface Sci; 2021 Apr; 588():580-588. PubMed ID: 33450601 [TBL] [Abstract][Full Text] [Related]
11. Progress in research on natural cellulosic fibre modifications by polyelectrolytes. Sun Z; Zhang X; Wang X; Liang S; Li N; An H Carbohydr Polym; 2022 Feb; 278():118966. PubMed ID: 34973781 [TBL] [Abstract][Full Text] [Related]
12. Tuning the underwater adhesiveness of antibacterial polysaccharides complex coacervates. Galland P; Iqbal MH; Favier D; Legros M; Schaaf P; Boulmedais F; Vahdati M J Colloid Interface Sci; 2024 May; 661():196-206. PubMed ID: 38301458 [TBL] [Abstract][Full Text] [Related]
13. Interfacial properties of polymeric complex coacervates from simulation and theory. Lytle TK; Salazar AJ; Sing CE J Chem Phys; 2018 Oct; 149(16):163315. PubMed ID: 30384702 [TBL] [Abstract][Full Text] [Related]
14. Emulsions Stabilized with Polyelectrolyte Complexes Prepared from a Mixture of a Weak and a Strong Polyelectrolyte. Bago Rodriguez AM; Binks BP; Sekine T Langmuir; 2019 May; 35(20):6693-6707. PubMed ID: 31063381 [TBL] [Abstract][Full Text] [Related]
15. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Wågberg L; Decher G; Norgren M; Lindström T; Ankerfors M; Axnäs K Langmuir; 2008 Feb; 24(3):784-95. PubMed ID: 18186655 [TBL] [Abstract][Full Text] [Related]
16. Transient formation of multi-phase droplets caused by the addition of a folded protein into complex coacervates with an oppositely charged surface relative to the protein. Sakakibara N; Ura T; Mikawa T; Sugai H; Shiraki K Soft Matter; 2023 Jun; 19(25):4642-4650. PubMed ID: 37291907 [TBL] [Abstract][Full Text] [Related]
17. Sodium Alginate- and Cationic Cellulose-Functionalized Polycaprolactone Nanofibers for In Vitro and Antibacterial Applications. Tolba E; Salama A; Saleh AK; Cruz-Maya I; Guarino V Molecules; 2023 Oct; 28(21):. PubMed ID: 37959725 [TBL] [Abstract][Full Text] [Related]
18. pH-switchable pickering emulsions stabilized by polyelectrolyte-biosurfactant complex coacervate colloids. Laquerbe S; Carvalho A; Schmutz M; Poirier A; Baccile N; Ben Messaoud G J Colloid Interface Sci; 2021 Oct; 600():23-36. PubMed ID: 34000475 [TBL] [Abstract][Full Text] [Related]
19. Influence of the backbone chemistry and ionic functional groups of five pairs of oppositely charged polyelectrolytes on complex coacervation. Hong Y; Yoo S; Han J; Kim J; Lee Y; Jho Y; Kim YS; Hwang DS Commun Chem; 2024 Aug; 7(1):182. PubMed ID: 39147800 [TBL] [Abstract][Full Text] [Related]
20. Effects of Salt on Phase Behavior and Rheological Properties of Alginate-Chitosan Polyelectrolyte Complexes. Varadarajan A; Kearney LT; Keum JK; Naskar AK; Kundu S Biomacromolecules; 2023 Jun; 24(6):2730-2740. PubMed ID: 37261758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]