These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 32715229)
21. Investigation on Imbibition Mechanism of Tight Core Based on NMR Test. Jin Y; Guo K; Shi W; Xi R; Pan Y; Yang Z; Wu B; Xie H ACS Omega; 2023 Apr; 8(13):11916-11922. PubMed ID: 37033820 [TBL] [Abstract][Full Text] [Related]
22. Imbibition Characteristics and Influencing Factors of the Fracturing Fluid in a Tight Sandstone Reservoir. Li T; Ren D; Sun H; Wang H; Tian T; Li Q; Yan Z ACS Omega; 2024 Apr; 9(15):17204-17216. PubMed ID: 38645319 [TBL] [Abstract][Full Text] [Related]
23. Oil recovery performances of surfactant solutions by capillary imbibition. Babadagli T; Boluk Y J Colloid Interface Sci; 2005 Feb; 282(1):162-75. PubMed ID: 15576095 [TBL] [Abstract][Full Text] [Related]
24. Study on Surfactant-Polymer Flooding after Polymer Flooding in High-Permeability Heterogeneous Offshore Oilfields: A Case Study of Bohai S Oilfield. Liu Y; Ge L; Ma K; Chen X; Zhu Z; Hou J Polymers (Basel); 2024 Jul; 16(14):. PubMed ID: 39065321 [TBL] [Abstract][Full Text] [Related]
25. Flooding Performance and Optimization of Injection Parameters of Nanosized Oil Displacement Agents in Extra-Low-Permeability Reservoirs. Deng Z; Li Z; Li P; Wu W; Xiong L; Zhang Z; Yang Y; Cheng Y ACS Omega; 2024 Apr; 9(17):19043-19050. PubMed ID: 38708255 [TBL] [Abstract][Full Text] [Related]
26. Scaling of spontaneous imbibition data with wettability included. Li K J Contam Hydrol; 2007 Jan; 89(3-4):218-30. PubMed ID: 17081652 [TBL] [Abstract][Full Text] [Related]
27. The Effect of Crude Oil Stripped by Surfactant Action and Fluid Free Motion Characteristics in Porous Medium. Cheng Q; Cao G; Bai Y; Liu Y Molecules; 2024 Jan; 29(2):. PubMed ID: 38257201 [TBL] [Abstract][Full Text] [Related]
28. Insight into the Imbibition Behavior of Low-Frequency Artificial Vibration Stimulation in Tight Sandstone. Gu X; Qi A; Yang X; Huang F; Pu C; Jing C; Hu X ACS Omega; 2024 Jul; 9(26):28494-28504. PubMed ID: 38973862 [TBL] [Abstract][Full Text] [Related]
29. Experimental investigation of nanofluid enhanced oil recovery by spontaneous imbibition. Zhang J; Huang H; Zhang M; Wang W RSC Adv; 2023 May; 13(24):16165-16174. PubMed ID: 37260713 [TBL] [Abstract][Full Text] [Related]
30. Experimental Investigation on the Interfacial Characteristics of Tight Oil Rocks Induced by Tuning Brine Chemistry. Cheng Z; Tong S; Wang D; Luo K; Dou L; Yue Y ACS Omega; 2024 Jul; 9(28):30654-30664. PubMed ID: 39035926 [TBL] [Abstract][Full Text] [Related]
31. Spontaneous and forced imbibition of aqueous wettability altering surfactant solution into an initially oil-wet capillary. Hammond PS; Unsal E Langmuir; 2009 Nov; 25(21):12591-603. PubMed ID: 19673494 [TBL] [Abstract][Full Text] [Related]
32. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel. Yun W; Chang S; Cogswell DA; Eichmann SL; Gizzatov A; Thomas G; Al-Hazza N; Abdel-Fattah A; Wang W Sci Rep; 2020 Jan; 10(1):782. PubMed ID: 31964925 [TBL] [Abstract][Full Text] [Related]
33. Numerical Simulation of Spontaneous Imbibition under Different Boundary Conditions in Tight Reservoirs. Wang Y; Liu H; Li Y; Wang Q ACS Omega; 2021 Aug; 6(33):21294-21303. PubMed ID: 34471734 [TBL] [Abstract][Full Text] [Related]
34. Imaging porosity evolution of tight sandstone during spontaneous water imbibition by X-ray Micro-CT. Miletić M; Küçükuysal C; Gülcan M; Garcia R Heliyon; 2024 Jun; 10(11):e31844. PubMed ID: 38845948 [TBL] [Abstract][Full Text] [Related]
35. Adsorption Behavior of Different Components of a Polymer/Surfactant Composite Control System along an Injection-Production Channel in Sand Conglomerate Reservoirs. Wang Y; Qin D; Jiang S ACS Omega; 2024 Oct; 9(39):40665-40675. PubMed ID: 39371979 [TBL] [Abstract][Full Text] [Related]
36. Difference in Step-Wise Production Rules of SP Binary Flooding for Conglomerate Reservoirs with Different Lithologies. Lv J; Liao G; Ma C; Du M; Wang X; Tan F Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514507 [TBL] [Abstract][Full Text] [Related]
37. Spontaneous Imbibition Oil Recovery by Natural Surfactant/Nanofluid: An Experimental and Theoretical Study. Khoramian R; Kharrat R; Pourafshary P; Golshokooh S; Hashemi F Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296753 [TBL] [Abstract][Full Text] [Related]
38. Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation. Nwidee LN; Lebedev M; Barifcani A; Sarmadivaleh M; Iglauer S J Colloid Interface Sci; 2017 Oct; 504():334-345. PubMed ID: 28577448 [TBL] [Abstract][Full Text] [Related]
39. Enhancing the Oil Recovery from Naturally Fractured Reservoirs Using Viscoelastic Surfactant (VES) Flooding: A Field-Scale Simulation. Ahmed ME; Hassan AM; Sultan AS; Mahmoud M ACS Omega; 2022 Jan; 7(1):504-517. PubMed ID: 35036719 [TBL] [Abstract][Full Text] [Related]
40. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process. Salehi MM; Safarzadeh MA; Sahraei E; Nejad SA J Pet Sci Eng; 2014 Aug; 120():86-93. PubMed ID: 26594096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]