These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32715237)

  • 1. Development of a Microfluidic Method to Study Enhanced Oil Recovery by Low Salinity Water Flooding.
    Saadat M; Tsai PA; Ho TH; Øye G; Dudek M
    ACS Omega; 2020 Jul; 5(28):17521-17530. PubMed ID: 32715237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR.
    Aadland RC; Akarri S; Heggset EB; Syverud K; Torsæter O
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Brine pH Effect on the Rheological and Viscoelastic Properties of HPAM Polymer for an Optimized Enhanced Oil Recovery Design.
    Shakeel M; Pourafshary P; Hashmet MR
    ACS Omega; 2022 May; 7(17):14961-14971. PubMed ID: 35557675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Core Flood Investigation of Nanocellulose as a Green Additive for Enhanced Oil Recovery.
    Aadland RC; Jakobsen TD; Heggset EB; Long-Sanouiller H; Simon S; Paso KG; Syverud K; Torsæter O
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31035570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing in-situ emulsification in porous media during surfactant flooding: A microfluidic study.
    Zhao X; Feng Y; Liao G; Liu W
    J Colloid Interface Sci; 2020 Oct; 578():629-640. PubMed ID: 32554145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanistic investigation of low salinity water flooding coupled with ion tuning for enhanced oil recovery.
    Saw RK; Mandal A
    RSC Adv; 2020 Nov; 10(69):42570-42583. PubMed ID: 35516738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dataset on effect of sand grain size and water salinity on oil recovery.
    Okoro EE; Lawal AO; Sanni SE; Orodu KB; Emetere ME
    Data Brief; 2021 Feb; 34():106695. PubMed ID: 33437853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation on the Pore-Scale Mechanism of Improved Sweep Efficiency by Low-Salinity Water Flooding Using a Reservoir-on-a-Chip.
    Li S; Liu Y; Xue L; Yang L; Yuan Z
    ACS Omega; 2021 Aug; 6(32):20984-20991. PubMed ID: 34423206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the role of brine ionic composition on oil recovery by assessment of wettability from colloidal forces.
    Alshakhs MJ; Kovscek AR
    Adv Colloid Interface Sci; 2016 Jul; 233():126-138. PubMed ID: 26344867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study on the Mechanism and Law of Low-Salinity Water Flooding for Enhanced Oil Recovery in Tight Sandstone Reservoirs.
    Fan P; Liu Y; He Y; Hu Y; Chao L; Wang Y; Liu L; Li J
    ACS Omega; 2024 Mar; 9(11):12665-12675. PubMed ID: 38524499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number.
    Kakati A; Kumar G; Sangwai JS
    ACS Omega; 2020 Jan; 5(3):1506-1518. PubMed ID: 32010824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.
    Salehi MM; Safarzadeh MA; Sahraei E; Nejad SA
    J Pet Sci Eng; 2014 Aug; 120():86-93. PubMed ID: 26594096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-scale imaging and analysis of low salinity waterflooding in a heterogeneous carbonate rock at reservoir conditions.
    Selem AM; Agenet N; Gao Y; Raeini AQ; Blunt MJ; Bijeljic B
    Sci Rep; 2021 Jul; 11(1):15063. PubMed ID: 34301968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.
    Chávez-Miyauchi TE; Firoozabadi A; Fuller GG
    Langmuir; 2016 Mar; 32(9):2192-8. PubMed ID: 26840555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-scale processes in tertiary low salinity waterflooding in a carbonate rock: Micro-dispersions, water film growth, and wettability change.
    Selem AM; Agenet N; Blunt MJ; Bijeljic B
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):486-498. PubMed ID: 35940140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).
    Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS
    PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes.
    Song W; Kovscek AR
    Lab Chip; 2015 Aug; 15(16):3314-25. PubMed ID: 26151880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the interactions between asphaltene and a low surface energy anionic surfactant under low and high brine salinity.
    Kiani S; Jones DR; Alexander S; Barron AR
    J Colloid Interface Sci; 2020 Jul; 571():307-317. PubMed ID: 32208201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery.
    Khademolhosseini R; Jafari A; Mousavi SM; Manteghian M
    RSC Adv; 2019 Jun; 9(35):20281-20294. PubMed ID: 35514690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel insights into pore-scale dynamics of wettability alteration during low salinity waterflooding.
    Aziz R; Joekar-Niasar V; Martínez-Ferrer PJ; Godinez-Brizuela OE; Theodoropoulos C; Mahani H
    Sci Rep; 2019 Jun; 9(1):9257. PubMed ID: 31239462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.