BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32715255)

  • 1. Effect of Additives on the Foam Behavior of Aviation Coolants: Tendency, Stability, and Defoaming.
    Mao J; Chen T; Guo L; Yang S; Xu X; Ma J; Hu J
    ACS Omega; 2020 Jul; 5(28):17686-17691. PubMed ID: 32715255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Foam Characteristics on the Aviation Coolants' Pollution Degree.
    Mao J; Chen T; Xu X; Yang S; Guo L; Ma J; Yao T; Xin Y; Hu J
    ACS Omega; 2020 Nov; 5(46):30323-30328. PubMed ID: 33251467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of silicones and polymers on the wetting and foaming properties of anionic and nonionic hydrocarbon surfactants.
    Wang Q; Tuo L; Zhou G; Zhang Y; Geng X; Zhang F; Li Y
    Environ Sci Pollut Res Int; 2022 Nov; 29(54):81713-81725. PubMed ID: 35739450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study of the Influence of Inorganic Salts on Foam Stability.
    Fu Z; Chen P; Liu Y; Li J
    Langmuir; 2022 Dec; 38(48):14607-14614. PubMed ID: 36399120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulation of the Synergistic Effect of Alkali/Surfactant/Polymer on the Formation and Stabilization of Water-Based Foam Systems.
    Wang Y; Le X; Wang X; Liu W; Wang Z
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid oil that flows in spaces of aqueous foam without defoaming.
    Sonoda J; Sakai T; Inomata Y
    J Phys Chem B; 2014 Aug; 118(31):9438-44. PubMed ID: 25019527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imidazolium based ionic liquid stabilized foams for conformance control: bulk and porous scale investigation.
    Sakthivel S; Babu Salin R
    RSC Adv; 2021 Sep; 11(47):29711-29727. PubMed ID: 35479573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of nanoparticle aggregation on surfactant foam stability.
    AlYousef ZA; Almobarky MA; Schechter DS
    J Colloid Interface Sci; 2018 Feb; 511():365-373. PubMed ID: 29031155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of selected monovalent salts on surfactant stabilized foams.
    Amani P; Karakashev SI; Grozev NA; Simeonova SS; Miller R; Rudolph V; Firouzi M
    Adv Colloid Interface Sci; 2021 Sep; 295():102490. PubMed ID: 34385000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant micelles containing solubilized oil decrease foam film thickness stability.
    Lee J; Nikolov A; Wasan D
    J Colloid Interface Sci; 2014 Feb; 415():18-25. PubMed ID: 24267325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of different surfactants on foam stability in foam sclerotherapy in vitro.
    Bai T; Liu Y; Liu J; Yu C; Jiang W; Fan Y
    J Vasc Surg; 2019 Feb; 69(2):581-591.e1. PubMed ID: 29954633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-specific effects in foams.
    Sett S; Karakashev SI; Smoukov SK; Yarin AL
    Adv Colloid Interface Sci; 2015 Nov; 225():98-113. PubMed ID: 26386757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial properties and foam stability effect of novel gemini-type surfactants in aqueous solutions.
    Acharya DP; Gutiérrez JM; Aramaki K; Aratani K; Kunieda H
    J Colloid Interface Sci; 2005 Nov; 291(1):236-43. PubMed ID: 16154135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current applications of foams formed from mixed surfactant-polymer solutions.
    Bureiko A; Trybala A; Kovalchuk N; Starov V
    Adv Colloid Interface Sci; 2015 Aug; 222():670-7. PubMed ID: 25455806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific salt and pH effects on foam film of a pH sensitive surfactant.
    Micheau C; Bauduin P; Diat O; Faure S
    Langmuir; 2013 Jul; 29(27):8472-81. PubMed ID: 23758636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study of foam-oil interactions for nonionic-based binary surfactant systems under high salinity conditions.
    Bello A; Ivanova A; Bakulin D; Yunusov T; Rodionov A; Burukhin A; Cheremisin A
    Sci Rep; 2024 May; 14(1):12208. PubMed ID: 38806570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanism of enhanced foam stability by combining carboxylated cellulose nanofiber with hydrocarbon and fluorocarbon surfactants.
    Li Q; Yu X; Lin J; Qiu K; Li H; Lu S
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):125012. PubMed ID: 37220851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Promoting and Breaking Intersurfactant H-Bonds Impact Foam Stability.
    Preisig N; Schad T; Jacomine L; Bordes R; Stubenrauch C
    Langmuir; 2019 Nov; 35(47):14999-15008. PubMed ID: 31725301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.