BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32715541)

  • 1. Structure-guided evolution of Green2 toward photostability and quantum yield enhancement by F145Y substitution.
    Sun T; Li T; Yi K; Gao X
    Protein Sci; 2020 Sep; 29(9):1964-1974. PubMed ID: 32715541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging.
    Ai HW; Henderson JN; Remington SJ; Campbell RE
    Biochem J; 2006 Dec; 400(3):531-40. PubMed ID: 16859491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications.
    Ai HW; Baird MA; Shen Y; Davidson MW; Campbell RE
    Nat Protoc; 2014 Apr; 9(4):910-28. PubMed ID: 24651502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging.
    Ai HW; Olenych SG; Wong P; Davidson MW; Campbell RE
    BMC Biol; 2008 Mar; 6():13. PubMed ID: 18325109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent protein applications in microscopy.
    Johnson WL; Straight AF
    Methods Cell Biol; 2013; 114():99-123. PubMed ID: 23931504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%.
    Goedhart J; von Stetten D; Noirclerc-Savoye M; Lelimousin M; Joosen L; Hink MA; van Weeren L; Gadella TW; Royant A
    Nat Commun; 2012 Mar; 3():751. PubMed ID: 22434194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein.
    Watkins JL; Kim H; Markwardt ML; Chen L; Fromme R; Rizzo MA; Wachter RM
    Acta Crystallogr D Biol Crystallogr; 2013 May; 69(Pt 5):767-73. PubMed ID: 23633585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the Role of Positions 145 and 165 in Fluorescence Lifetime Shortening in the EGFP Variants.
    Mamontova AV; Shakhov AM; Lukyanov KA; Bogdanov AM
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33202759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of EGFP and EYFP.
    Sen T; Mamontova AV; Titelmayer AV; Shakhov AM; Astafiev AA; Acharya A; Lukyanov KA; Krylov AI; Bogdanov AM
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31652505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromophore Isomer Stabilization Is Critical to the Efficient Fluorescence of Cyan Fluorescent Proteins.
    Gotthard G; von Stetten D; Clavel D; Noirclerc-Savoye M; Royant A
    Biochemistry; 2017 Dec; 56(49):6418-6422. PubMed ID: 29148725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral and structural comparison between bright and dim green fluorescent proteins in Amphioxus.
    Bomati EK; Haley JE; Noel JP; Deheyn DD
    Sci Rep; 2014 Jun; 4():5469. PubMed ID: 24968921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer.
    McAnaney TB; Shi X; Abbyad P; Jung H; Remington SJ; Boxer SG
    Biochemistry; 2005 Jun; 44(24):8701-11. PubMed ID: 15952777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the fluorescence of the blue fluorescent proteins by high pressure or low temperature.
    Mauring K; Deich J; Rosell FI; McAnaney TB; Moerner WE; Boxer SG
    J Phys Chem B; 2005 Jul; 109(26):12976-81. PubMed ID: 16852610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically modulating the photophysics of the GFP chromophore.
    Conyard J; Kondo M; Heisler IA; Jones G; Baldridge A; Tolbert LM; Solntsev KM; Meech SR
    J Phys Chem B; 2011 Feb; 115(6):1571-7. PubMed ID: 21268624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling spectral tuning in monomeric teal fluorescent protein mTFP1.
    Topol I; Collins J; Nemukhin A
    Biophys Chem; 2010 Jul; 149(3):78-82. PubMed ID: 20442006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond protein tagging: Rewiring the genetic code of fluorescent proteins - A review.
    Aarthy M; George A; Ayyadurai N
    Int J Biol Macromol; 2021 Nov; 191():840-851. PubMed ID: 34560154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins.
    Drobizhev M; Molina RS; Callis PR; Scott JN; Lambert GG; Salih A; Shaner NC; Hughes TE
    Front Mol Biosci; 2021; 8():633217. PubMed ID: 33763453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast internal conversion dynamics of bilirubin bound to UnaG and its N57A mutant.
    Cao X; Zhang C; Gao Z; Liu Y; Zhao Y; Yang Y; Chen J; Jimenez R; Xu J
    Phys Chem Chem Phys; 2019 Jan; 21(5):2365-2371. PubMed ID: 30666332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.