BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32715544)

  • 1. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure.
    Bromley D; Daggett V
    Protein Sci; 2020 Sep; 29(9):1983-1999. PubMed ID: 32715544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common cancer mutations R175H and R273H drive the p53 DNA-binding domain towards aggregation-prone conformations.
    Li L; Li X; Tang Y; Lao Z; Lei J; Wei G
    Phys Chem Chem Phys; 2020 May; 22(17):9225-9232. PubMed ID: 32307496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer.
    Silva JL; Cino EA; Soares IN; Ferreira VF; A P de Oliveira G
    Acc Chem Res; 2018 Jan; 51(1):181-190. PubMed ID: 29260852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein.
    Bromley D; Bauer MR; Fersht AR; Daggett V
    Protein Eng Des Sel; 2016 Sep; 29(9):377-90. PubMed ID: 27503952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain.
    Calhoun S; Daggett V
    Biochemistry; 2011 Jun; 50(23):5345-53. PubMed ID: 21561095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy.
    Olotu FA; Soliman MES
    J Cell Biochem; 2019 Jan; 120(1):951-966. PubMed ID: 30160791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Mutation on an Aggregation-Prone Segment of p53: From Monomer to Dimer to Multimer.
    Das A; Makarov DE
    J Phys Chem B; 2016 Nov; 120(45):11665-11673. PubMed ID: 27775362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the Effect of the G245S Single Point Mutation on the Structure of p53 and the Binding of the Protein to DNA.
    Lepre MG; Omar SI; Grasso G; Morbiducci U; Deriu MA; Tuszynski JA
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28813011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. R248Q mutation--Beyond p53-DNA binding.
    Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY
    Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wild type p53 function in p53
    Sundar D; Yu Y; Katiyar SP; Putri JF; Dhanjal JK; Wang J; Sari AN; Kolettas E; Kaul SC; Wadhwa R
    J Exp Clin Cancer Res; 2019 Feb; 38(1):103. PubMed ID: 30808373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant.
    Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW
    J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study.
    Kamaraj B; Bogaerts A
    PLoS One; 2015; 10(8):e0134638. PubMed ID: 26244575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study on the inhibition mechanisms of ReACp53 peptide for p53-R175H mutant aggregation.
    Lei J; Cai M; Shen Y; Lin D; Deng X
    Phys Chem Chem Phys; 2021 Oct; 23(40):23032-23041. PubMed ID: 34612239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot-spot mutants of p53 core domain evince characteristic local structural changes.
    Wong KB; DeDecker BS; Freund SM; Proctor MR; Bycroft M; Fersht AR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8438-42. PubMed ID: 10411893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the
    Chitrala KN; Nagarkatti M; Nagarkatti P; Yeguvapalli S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31216622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function-rescue: the diverse nature of common p53 cancer mutants.
    Joerger AC; Fersht AR
    Oncogene; 2007 Apr; 26(15):2226-42. PubMed ID: 17401432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into a novel p53 single point mutation (G389E) by Molecular Dynamics Simulations.
    Pirolli D; Carelli Alinovi C; Capoluongo E; Satta MA; Concolino P; Giardina B; De Rosa MC
    Int J Mol Sci; 2010 Dec; 12(1):128-40. PubMed ID: 21339981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket.
    Pradhan MR; Siau JW; Kannan S; Nguyen MN; Ouaray Z; Kwoh CK; Lane DP; Ghadessy F; Verma CS
    Nucleic Acids Res; 2019 Feb; 47(4):1637-1652. PubMed ID: 30649466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of dual agents as an activator of mutant p53 and inhibitor of Hsp90 by docking, molecular dynamic simulation and virtual screening.
    Abbasi M; Sadeghi-Aliabadi H; Hassanzadeh F; Amanlou M
    J Mol Graph Model; 2015 Sep; 61():186-95. PubMed ID: 26277488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.