BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32715666)

  • 41. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways.
    Tatsiy O; McDonald PP
    Front Immunol; 2018; 9():2036. PubMed ID: 30279690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment.
    Varjú I; Longstaff C; Szabó L; Farkas ÁZ; Varga-Szabó VJ; Tanka-Salamon A; Machovich R; Kolev K
    Thromb Haemost; 2015 Jun; 113(6):1289-98. PubMed ID: 25789443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Etiopathology of Behçet's disease: immunological aspects.
    Sakane T; Suzuki N; Nagafuchi H
    Yonsei Med J; 1997 Dec; 38(6):350-8. PubMed ID: 9509903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neutrophil extracellular traps in immunity and disease.
    Papayannopoulos V
    Nat Rev Immunol; 2018 Feb; 18(2):134-147. PubMed ID: 28990587
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx.
    Douda DN; Khan MA; Grasemann H; Palaniyar N
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2817-22. PubMed ID: 25730848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compromised Anti-inflammatory Action of Neutrophil Extracellular Traps in PAD4-Deficient Mice Contributes to Aggravated Acute Inflammation After Myocardial Infarction.
    Eghbalzadeh K; Georgi L; Louis T; Zhao H; Keser U; Weber C; Mollenhauer M; Conforti A; Wahlers T; Paunel-Görgülü A
    Front Immunol; 2019; 10():2313. PubMed ID: 31632398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Behçet's disease associated with myelodysplastic syndromes. A case report and a review of the literature.
    Ohno E; Ohtsuka E; Watanabe K; Kohno T; Takeoka K; Saburi Y; Kikuchi H; Nasu M
    Cancer; 1997 Jan; 79(2):262-8. PubMed ID: 9010099
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions between neutrophil extracellular traps and activated platelets enhance procoagulant activity in acute stroke patients with ICA occlusion.
    Zhou P; Li T; Jin J; Liu Y; Li B; Sun Q; Tian J; Zhao H; Liu Z; Ma S; Zhang S; Novakovic VA; Shi J; Hu S
    EBioMedicine; 2020 Mar; 53():102671. PubMed ID: 32114386
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correspondence on 'Critical role of neutrophil extracellular traps (NETs) in patients with Behcet's disease'.
    Chen J; Liu T; He J; Liu Y
    Ann Rheum Dis; 2023 Feb; 82(2):e48. PubMed ID: 33361101
    [No Abstract]   [Full Text] [Related]  

  • 50. Neutrophil Extracellular Traps in Periodontitis.
    Magán-Fernández A; Rasheed Al-Bakri SM; O'Valle F; Benavides-Reyes C; Abadía-Molina F; Mesa F
    Cells; 2020 Jun; 9(6):. PubMed ID: 32575367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Consequences of extracellular trap formation in sepsis.
    O'Brien XM; Biron BM; Reichner JS
    Curr Opin Hematol; 2017 Jan; 24(1):66-71. PubMed ID: 27820735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization, Quantification, and Visualization of Neutrophil Extracellular Traps.
    White PC; Chicca IJ; Ling MR; Wright HJ; Cooper PR; Milward MR; Chapple IL
    Methods Mol Biol; 2017; 1537():481-497. PubMed ID: 27924613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke.
    Kang L; Yu H; Yang X; Zhu Y; Bai X; Wang R; Cao Y; Xu H; Luo H; Lu L; Shi MJ; Tian Y; Fan W; Zhao BQ
    Nat Commun; 2020 May; 11(1):2488. PubMed ID: 32427863
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of Neutrophil Activation by Phosphodiesterase 4 Blockade in Behçet's Disease.
    Le Joncour A; Régnier P; Maciejewski-Duval A; Charles E; Barete S; Fouret P; Rosenzwajg M; Klatzmann D; Cacoub P; Saadoun D
    Arthritis Rheumatol; 2023 Sep; 75(9):1628-1637. PubMed ID: 36862398
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neutrophils: back in the thrombosis spotlight.
    Noubouossie DF; Reeves BN; Strahl BD; Key NS
    Blood; 2019 May; 133(20):2186-2197. PubMed ID: 30898858
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The pathogenesis of lesions in Behçet's disease.
    Haim S
    Dermatologica; 1979; 158(1):31-7. PubMed ID: 367842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Behçet's syndrome as a tool to dissect the mechanisms of thrombo-inflammation: clinical and pathogenetic aspects.
    Becatti M; Emmi G; Bettiol A; Silvestri E; Di Scala G; Taddei N; Prisco D; Fiorillo C
    Clin Exp Immunol; 2019 Mar; 195(3):322-333. PubMed ID: 30472725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antiannexin V autoantibody in thrombophilic Behçet's disease.
    Aslan H; Pay S; Gok F; Baykal Y; Yilmaz MI; Sengul A; Aydin HI
    Rheumatol Int; 2004 Mar; 24(2):77-9. PubMed ID: 14658002
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of HMGB1 in the Interplay between NETosis and Thrombosis in Ischemic Stroke: A Review.
    Kim SW; Lee JK
    Cells; 2020 Jul; 9(8):. PubMed ID: 32731558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa.
    Mohanty T; Sjögren J; Kahn F; Abu-Humaidan AH; Fisker N; Assing K; Mörgelin M; Bengtsson AA; Borregaard N; Sørensen OE
    Blood; 2015 Oct; 126(18):2128-37. PubMed ID: 26243777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.