BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 32715779)

  • 41. Retention of insulin-like growth factor I bioactivity during the fabrication of sintered polymeric scaffolds.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Biomed Mater; 2014 Apr; 9(2):025015. PubMed ID: 24565886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration.
    Hsu SH; Chang SH; Yen HJ; Whu SW; Tsai CL; Chen DC
    Artif Organs; 2006 Jan; 30(1):42-55. PubMed ID: 16409397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration.
    El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM
    Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model.
    Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK
    Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of 3D-printed PLGA/TiO
    Rasoulianboroujeni M; Fahimipour F; Shah P; Khoshroo K; Tahriri M; Eslami H; Yadegari A; Dashtimoghadam E; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():105-113. PubMed ID: 30606516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The study on biocompatibility of porous nHA/PLGA composite scaffolds for tissue engineering with rabbit chondrocytes in vitro.
    Chen L; Zhu WM; Fei ZQ; Chen JL; Xiong JY; Zhang JF; Duan L; Huang J; Liu Z; Wang D; Zeng Y
    Biomed Res Int; 2013; 2013():412745. PubMed ID: 24380082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs).
    Wang Z; Liang R; Jiang X; Xie J; Cai P; Chen H; Zhan X; Lei D; Zhao J; Zheng L
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109796. PubMed ID: 31500029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine.
    Honarvar A; Setayeshmehr M; Ghaedamini S; Hashemibeni B; Moroni L; Karbasi S
    J Biomater Sci Polym Ed; 2024 Apr; 35(6):799-822. PubMed ID: 38289681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
    Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF
    Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration.
    Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y
    Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of double growth factor release on cartilage tissue engineering.
    Ertan AB; Yılgor P; Bayyurt B; Calıkoğlu AC; Kaspar C; Kök FN; Kose GT; Hasirci V
    J Tissue Eng Regen Med; 2013 Feb; 7(2):149-60. PubMed ID: 22081628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering.
    Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic compression combined with SOX-9 overexpression in rabbit adipose-derived mesenchymal stem cells cultured in a three-dimensional gradual porous PLGA composite scaffold upregulates HIF-1α expression.
    Chen X; Li J; Wang E; Zhao Q; Kong Z; Yuan X
    J Biomed Mater Res A; 2015 Dec; 103(12):3886-95. PubMed ID: 26123537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues.
    Natarajan ABM; Sivadas VPD; Nair PDPD
    Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34265754
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis.
    Park KS; Kim BJ; Lih E; Park W; Lee SH; Joung YK; Han DK
    Acta Biomater; 2018 Jun; 73():204-216. PubMed ID: 29673840
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Vitro Production of Cartilage Tissue from Rabbit Bone Marrow-Derived Mesenchymal Stem Cells and Polycaprolactone Scaffold.
    Dao TT; Vu NB; Pham LH; Van Gia L; Le HT; Phi LT; Bui KH; Le PT; Van Pham P
    Adv Exp Med Biol; 2019; 1084():45-60. PubMed ID: 29299874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.