These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32716183)
1. Wilhelmy equation revisited: A lightweight method to measure liquid-vapor, solid-liquid, and solid-vapor interfacial tensions from a single molecular dynamics simulation. Imaizumi Y; Omori T; Kusudo H; Bistafa C; Yamaguchi Y J Chem Phys; 2020 Jul; 153(3):034701. PubMed ID: 32716183 [TBL] [Abstract][Full Text] [Related]
2. Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid. Yamaguchi Y; Kusudo H; Surblys D; Omori T; Kikugawa G J Chem Phys; 2019 Jan; 150(4):044701. PubMed ID: 30709259 [TBL] [Abstract][Full Text] [Related]
3. Quantifying the solid-fluid interfacial tensions depending on the substrate curvature: Young's equation holds for wetting around nanoscale cylinder. Watanabe K; Kusudo H; Bistafa C; Omori T; Yamaguchi Y J Chem Phys; 2022 Feb; 156(5):054701. PubMed ID: 35135251 [TBL] [Abstract][Full Text] [Related]
4. Extraction of the equilibrium pinning force on a contact line exerted from a wettability boundary of a solid surface through the connection between mechanical and thermodynamic routes. Kusudo H; Omori T; Yamaguchi Y J Chem Phys; 2019 Oct; 151(15):154501. PubMed ID: 31640353 [TBL] [Abstract][Full Text] [Related]
5. Recent progress in the determination of solid surface tensions from contact angles. Tavana H; Neumann AW Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380 [TBL] [Abstract][Full Text] [Related]
6. Measuring line tension: Thermodynamic integration during detachment of a molecular dynamics droplet. Shintaku M; Oga H; Kusudo H; Smith ER; Omori T; Yamaguchi Y J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856068 [TBL] [Abstract][Full Text] [Related]
7. On the cohesion of fluids and their adhesion to solids: Young's equation at the atomic scale. Fernandez-Toledano JC; Blake TD; Lambert P; De Coninck J Adv Colloid Interface Sci; 2017 Jul; 245():102-107. PubMed ID: 28457500 [TBL] [Abstract][Full Text] [Related]
8. A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems. Fan J; De Coninck J; Wu H; Wang F J Colloid Interface Sci; 2021 Mar; 585():320-327. PubMed ID: 33302048 [TBL] [Abstract][Full Text] [Related]
9. Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100. Müller EA; Mejía A J Phys Chem B; 2011 Nov; 115(44):12822-34. PubMed ID: 21932822 [TBL] [Abstract][Full Text] [Related]
10. Effect of molecular branching and surface wettability on solid-liquid surface tension and line-tension of liquid alkane surface nanodroplets. Jabbarzadeh A J Colloid Interface Sci; 2024 Jul; 666():355-370. PubMed ID: 38603878 [TBL] [Abstract][Full Text] [Related]
11. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting. McHale G; Orme BV; Wells GG; Ledesma-Aguilar R Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342 [TBL] [Abstract][Full Text] [Related]
12. Young's Equation for a Two-Liquid System on the Nanometer Scale. Fernandez-Toledano JC; Blake TD; De Coninck J Langmuir; 2017 Mar; 33(11):2929-2938. PubMed ID: 28248509 [TBL] [Abstract][Full Text] [Related]
13. Effect of adsorption on the surface tensions of solid-fluid interfaces. Ward CA; Wu J J Phys Chem B; 2007 Apr; 111(14):3685-94. PubMed ID: 17388534 [TBL] [Abstract][Full Text] [Related]
14. Surface tensions in NaCl-water-air systems from MD simulations. Bahadur R; Russell LM; Alavi S J Phys Chem B; 2007 Oct; 111(41):11989-96. PubMed ID: 17894485 [TBL] [Abstract][Full Text] [Related]
15. Interfacial tension of solid materials against dense carbon dioxide. Sutjiadi-Sia Y; Jaeger P; Eggers R J Colloid Interface Sci; 2008 Apr; 320(1):268-74. PubMed ID: 18255090 [TBL] [Abstract][Full Text] [Related]
16. Local pressure components and interfacial tensions of a liquid film in the vicinity of a solid surface with a nanometer-scale slit pore obtained by the perturbative method. Fujiwara K; Shibahara M J Chem Phys; 2015 Mar; 142(9):094702. PubMed ID: 25747094 [TBL] [Abstract][Full Text] [Related]
17. Quantifying interfacial tensions of surface nanobubbles: How far can Young's equation explain? Teshima H; Kusudo H; Bistafa C; Yamaguchi Y Nanoscale; 2022 Feb; 14(6):2446-2455. PubMed ID: 35098963 [TBL] [Abstract][Full Text] [Related]
18. Interfacial tensions and viscosities in multiphase systems by surface light scattering (SLS). Koller TM; Prucker T; Cui J; Klein T; Fröba AP J Colloid Interface Sci; 2019 Mar; 538():671-681. PubMed ID: 30594112 [TBL] [Abstract][Full Text] [Related]
19. Obtaining the solid-liquid interfacial free energy via multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces. Qi X; Zhou Y; Fichthorn KA J Chem Phys; 2016 Nov; 145(19):194108. PubMed ID: 27875872 [TBL] [Abstract][Full Text] [Related]
20. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries. Hsiao E; Marino MJ; Kim SH J Colloid Interface Sci; 2010 Dec; 352(2):549-57. PubMed ID: 20883999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]