These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32716183)

  • 21. Water on hydroxylated silica surfaces: Work of adhesion, interfacial entropy, and droplet wetting.
    Bistafa C; Surblys D; Kusudo H; Yamaguchi Y
    J Chem Phys; 2021 Aug; 155(6):064703. PubMed ID: 34391348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface.
    Surblys D; Yamaguchi Y; Kuroda K; Kagawa M; Nakajima T; Fujimura H
    J Chem Phys; 2014 Jan; 140(3):034505. PubMed ID: 25669398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method.
    Klauda JB; Wu X; Pastor RW; Brooks BR
    J Phys Chem B; 2007 May; 111(17):4393-400. PubMed ID: 17425357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method.
    Leroy F; Müller-Plathe F
    J Chem Phys; 2010 Jul; 133(4):044110. PubMed ID: 20687636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ensemble switch method for computing interfacial tensions.
    Schmitz F; Virnau P
    J Chem Phys; 2015 Apr; 142(14):144108. PubMed ID: 25877563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effective interfacial tensions between pure liquids and rough solids: a coarse-grained simulation study.
    Hernández Velázquez JD; Sánchez-Balderas G; Gama Goicochea A; Pérez E
    Phys Chem Chem Phys; 2023 Apr; 25(15):10325-10334. PubMed ID: 36987944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Finite-size thermomechanical effects in smectic liquid crystals: The vapor pressure paradox as an anharmonic phenomenon.
    Gao L; Golubović L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041907. PubMed ID: 14682973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamics Study of Hydrophilic Sphalerite (110) Surface as Modified by Normal and Branched Butylthiols.
    Anvari MH; Liu Q; Xu Z; Choi P
    Langmuir; 2018 Mar; 34(10):3363-3373. PubMed ID: 29451389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.
    Leroy F; Müller-Plathe F
    Langmuir; 2015 Aug; 31(30):8335-45. PubMed ID: 26158205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation.
    Garrido JM; Algaba J; Míguez JM; Mendiboure B; Moreno-Ventas Bravo AI; Piñeiro MM; Blas FJ
    J Chem Phys; 2016 Apr; 144(14):144702. PubMed ID: 27083740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment.
    Rabinovich YI; Esayanur MS; Moudgil BM
    Langmuir; 2005 Nov; 21(24):10992-7. PubMed ID: 16285763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kinetic approach to the theory of heterogeneous nucleation on soluble particles during the deliquescence stage.
    Djikaev YS; Ruckenstein E
    J Chem Phys; 2006 May; 124(19):194709. PubMed ID: 16729836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface.
    Nishida S; Surblys D; Yamaguchi Y; Kuroda K; Kagawa M; Nakajima T; Fujimura H
    J Chem Phys; 2014 Feb; 140(7):074707. PubMed ID: 24559360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular interactions at the metal-liquid interfaces.
    Orselly M; Devémy J; Bouvet-Marchand A; Dequidt A; Loubat C; Malfreyt P
    J Chem Phys; 2022 Jun; 156(23):234705. PubMed ID: 35732516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional density functional study of heterogeneous nucleation of droplets on solid surfaces.
    Zhou D; Mi J; Zhong C
    J Phys Chem B; 2012 Dec; 116(48):14100-6. PubMed ID: 23137277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the pinning time of a receding contact line under forced wetting conditions.
    Fernández-Toledano JC; Rigaut C; Mastrangeli M; De Coninck J
    J Colloid Interface Sci; 2020 Apr; 565():449-457. PubMed ID: 31982711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wetting of a High-Energy Fiber Surface.
    McHale G; Käb NA; Newton MI; Rowan SM
    J Colloid Interface Sci; 1997 Feb; 186(2):453-61. PubMed ID: 9056375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular simulation study of vapor-liquid critical properties of a simple fluid in attractive slit pores: crossover from 3D to 2D.
    Singh SK; Saha AK; Singh JK
    J Phys Chem B; 2010 Apr; 114(12):4283-92. PubMed ID: 20218567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A molecular dynamics study to determine the solid-liquid interfacial tension using test area simulation method (TASM).
    Nair AR; Sathian SP
    J Chem Phys; 2012 Aug; 137(8):084702. PubMed ID: 22938254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lateral capillary forces between solid bodies on liquid surface: a lattice Boltzmann study.
    Shinto H; Komiyama D; Higashitani K
    Langmuir; 2006 Feb; 22(5):2058-64. PubMed ID: 16489789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.