These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3271628)

  • 41. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium supplementation and thyroid hormone protect against gentamicin-induced inhibition of proximal tubular Na+,K(+)-ATPase activity and other renal functional changes.
    Fukuda Y; Eklöf AC; Malmborg AS; Aperia A
    Acta Physiol Scand; 1992 Jun; 145(2):93-8. PubMed ID: 1322021
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptation of distal tubule and collecting duct to increased Na delivery. II. Na+ and K+ transport.
    Stanton BA; Kaissling B
    Am J Physiol; 1988 Dec; 255(6 Pt 2):F1269-75. PubMed ID: 3202190
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Upregulation of calbindin D28k in the late distal tubules in the potassium-loaded adrenalectomized mouse kidney.
    Kobayashi M; Yasuoka Y; Sato Y; Zhou M; Abe H; Kawahara K; Okamoto H
    Clin Exp Nephrol; 2011 Jun; 15(3):355-362. PubMed ID: 21347582
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dopamine and the enhanced renal response to aldosterone in the rat on a high potassium diet.
    Adam WR; Goland G
    Clin Exp Pharmacol Physiol; 1979; 6(6):631-5. PubMed ID: 519911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of potassium depletion on tubular morphology in gentamicin-induced acute renal failure in dogs.
    Dobyan DC; Cronin RE; Bulger RE
    Lab Invest; 1982 Dec; 47(6):586-94. PubMed ID: 7144139
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of dexamethasone on renal electrolyte excretion in the adrenalectomized rat.
    Bia JM; Tyler K; DeFronzo RA
    Endocrinology; 1982 Sep; 111(3):882-8. PubMed ID: 7106056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of aldosterone on potassium recycling in the kidney of adrenalectomized rats.
    Higashihara E; Kokko JP
    Am J Physiol; 1985 Feb; 248(2 Pt 2):F219-27. PubMed ID: 3970211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of renal potassium conservation in the rat.
    Linas SL; Peterson LN; Anderson RJ; Aisenbrey GA; Simon FR; Berl T
    Kidney Int; 1979 Jun; 15(6):601-11. PubMed ID: 222934
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Renal tubular lithium reabsorption in potassium-depleted rats.
    Shirley DG; Walter SJ
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):663-70. PubMed ID: 9218225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid renal potassium adaptation in rats.
    Jackson CA
    Am J Physiol; 1992 Dec; 263(6 Pt 2):F1098-104. PubMed ID: 1481886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of renal Na+-K+-ATPase in the rat: role of increased potassium transport.
    Mujais SK; Chekal MA; Hayslett JP; Katz AI
    Am J Physiol; 1986 Aug; 251(2 Pt 2):F199-207. PubMed ID: 3017123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased renal sensitivity to aldosterone in the rat: induction by a high potassium diet.
    Adam WR; Funder JW
    Clin Exp Pharmacol Physiol; 1977; 4(3):283-93. PubMed ID: 891042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impaired urinary acidification in the hypothyroid rat.
    Michael UF; Chavez R; Cookson SL; Vaamonde CA
    Pflugers Arch; 1976 Feb; 361(3):215-20. PubMed ID: 3759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional correlates of compensatory renal hypertrophy.
    Hayslett JP; Kashgarian M; Epstein FH
    J Clin Invest; 1968 Apr; 47(4):774-99. PubMed ID: 5641618
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circadian variation in renal sodium and potassium handling in cirrhosis. The role of aldosterone, cortisol, sympathoadrenergic tone, and intratubular factors.
    Trevisani F; Bernardi M; De Palma R; Pancione L; Capani F; Baraldini M; Ligabue A; Gasbarrini G
    Gastroenterology; 1989 Apr; 96(4):1187-98. PubMed ID: 2925063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mineralo- and glucocorticoid effects on renal excretion of electrolytes.
    Campen TJ; Vaughn DA; Fanestil DD
    Pflugers Arch; 1983 Oct; 399(2):93-101. PubMed ID: 6647008
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence of a dynamic aldosterone-independent distal tubular control of renal sodium excretion in compensated liver cirrhosis.
    Sansoè G; Silvano S; Rosina F; Smedile A; Rizzetto M
    J Intern Med; 2005 Apr; 257(4):358-66. PubMed ID: 15788006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Establishment of a new rat model of chronic cyclosporine A nephrotoxicity].
    Sun QL; Chen YP; Rui HL
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2010 Apr; 32(2):205-9. PubMed ID: 20450554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of epinephrine infusion on plasma potassium and its urinary excretion in rats subjected to subtotal nephrectomy.
    Chamienia A; Rutkowski B; Manitius J; Manitius A
    Endocr Regul; 1994 Jun; 28(2):85-7. PubMed ID: 7949020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.