BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32716383)

  • 1. In Vitro and In Vivo Delivery of Magnetic Nanoparticle Hyperthermia using a Custom-Built Delivery System.
    Duval KEA; Petryk JD; Hoopes PJ
    J Vis Exp; 2020 Jul; (161):. PubMed ID: 32716383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle based cancer treatment: can delivered dose and biological dose be reliably modeled and quantified?
    Hoopes PJ; Petryk AA; Giustini AJ; Stigliano RV; D'Angelo RN; Tate JA; Cassim SM; Foreman A; Bischof JC; Pearce JA; Ryan T
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24392199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of iron oxide nanoparticle and microwave hyperthermia alone or combined with cisplatinum in murine breast tumors.
    Petryk AA; Stigliano RV; Giustini AJ; Gottesman RE; Trembly BS; Kaufman PA; Hoopes PJ
    Proc SPIE Int Soc Opt Eng; 2011 Feb; 7901():. PubMed ID: 24386533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia.
    Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O
    ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical sensing of
    Huang PC; Chaney EJ; Aksamitiene E; Barkalifa R; Spillman DR; Bogan BJ; Boppart SA
    Theranostics; 2021; 11(12):5620-5633. PubMed ID: 33897871
    [No Abstract]   [Full Text] [Related]  

  • 9. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunogenetic effects of low dose (CEM43 30) magnetic nanoparticle hyperthermia and radiation in melanoma cells.
    Duval KEA; Vernice NA; Wagner RJ; Fiering SN; Petryk JD; Lowry GJ; Tau SS; Yin J; Houde GR; Chaudhry AS; Hoopes PJ
    Int J Hyperthermia; 2019 Nov; 36(sup1):37-46. PubMed ID: 31795829
    [No Abstract]   [Full Text] [Related]  

  • 11. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.
    Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer.
    Attaluri A; Kandala SK; Wabler M; Zhou H; Cornejo C; Armour M; Hedayati M; Zhang Y; DeWeese TL; Herman C; Ivkov R
    Int J Hyperthermia; 2015 Jun; 31(4):359-74. PubMed ID: 25811736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.
    Kettering M; Richter H; Wiekhorst F; Bremer-Streck S; Trahms L; Kaiser WA; Hilger I
    Nanotechnology; 2011 Dec; 22(50):505102. PubMed ID: 22107782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A moderate thermal dose is sufficient for effective free and TSL based thermochemotherapy.
    van Rhoon GC; Franckena M; Ten Hagen TLM
    Adv Drug Deliv Rev; 2020; 163-164():145-156. PubMed ID: 32247801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery.
    Partanen A; Yarmolenko PS; Viitala A; Appanaboyina S; Haemmerich D; Ranjan A; Jacobs G; Woods D; Enholm J; Wood BJ; Dreher MR
    Int J Hyperthermia; 2012; 28(4):320-36. PubMed ID: 22621734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics.
    Chauhan M; Basu SM; Qasim M; Giri J
    Nanoscale; 2023 Apr; 15(16):7384-7402. PubMed ID: 36751724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: An approach towards enhanced attenuation of tumor.
    Singh A; Jain S; Sahoo SK
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110695. PubMed ID: 32204010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy.
    Tay ZW; Chandrasekharan P; Chiu-Lam A; Hensley DW; Dhavalikar R; Zhou XY; Yu EY; Goodwill PW; Zheng B; Rinaldi C; Conolly SM
    ACS Nano; 2018 Apr; 12(4):3699-3713. PubMed ID: 29570277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.