These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32716457)

  • 1. Emergent multiferroicity and strain-driven metal-semiconductor transitions in LaMnO
    Zhou P; Wang J; Liu H; Zhao L; Yang Q; Zhong C; Zhao Z; Qu L; Dong Z
    Phys Chem Chem Phys; 2020 Aug; 22(31):17503-17512. PubMed ID: 32716457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetism and hybrid improper ferroelectricity in LaMO
    Zhou P; Lu S; Li C; Zhong C; Zhao Z; Qu L; Min Y; Dong Z; Zhang N; Liu JM
    Phys Chem Chem Phys; 2019 Sep; 21(36):20132-20136. PubMed ID: 31482891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure and strain effects of hexagonal rare-earth manganites: a first-principles study.
    Tan H; Xu C; Li M; Wang S; Gu BL; Duan W
    J Phys Condens Matter; 2016 Mar; 28(12):126002. PubMed ID: 26916139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy for achieving multiferroic E-type magnetic order in orthorhombic manganites RMnO
    Xu L; Meng J; Liu Q; Meng J; Liu X; Zhang H
    Phys Chem Chem Phys; 2020 Mar; 22(9):4905-4915. PubMed ID: 32073064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic mechanistic study on the multiferroic of R2CoMnO6/La2CoMnO6 (R = Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm) by chemical and hydrostatic pressures: a first-principles calculation.
    Meng J; Liu X; Hao X; Zhang L; Yao F; Meng J; Zhang H
    Phys Chem Chem Phys; 2016 Sep; 18(34):23613-20. PubMed ID: 27506617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of tunable hybrid improper ferroelectricity in double-perovskite superlattice films.
    Jiang Y; Niu J; Wang C; Xue D; Shi X; Gao W; Zhao S
    Nat Commun; 2024 Jul; 15(1):5549. PubMed ID: 38956065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of vortex domain structures in multiferroic hexagonal manganites RMnO3 by transmission electron microscopy.
    Horibe Y; Huang FT; Choi T; Lee N; Cheong SW
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i22. PubMed ID: 25359818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy to Induce Multiferroic Property in (RTiO
    Yao F; Meng J; Zhang L; Liu X; Meng J; Zhang H
    Chemphyschem; 2019 May; 20(9):1145-1152. PubMed ID: 30873705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning ferroelectricity and ferromagnetism in BiFeO
    Jin C; Geng W; Wang L; Han W; Zheng D; Hu S; Ye M; Xu Z; Ji Y; Zhao J; Chen Z; Wang G; Tang Y; Zhu Y; Ma X; Chen L
    Nanoscale; 2020 May; 12(17):9810-9816. PubMed ID: 32329477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-Order-Induced Ferroelectricity in LaVO_{3}/SrVO_{3} Superlattices.
    Park SY; Kumar A; Rabe KM
    Phys Rev Lett; 2017 Feb; 118(8):087602. PubMed ID: 28282196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ferroelectric polarization of Y2CoMnO6 aligns along the b-axis: the first-principles calculations.
    Ma CY; Dong S; Zhou PX; Du ZZ; Liu MF; Liu HM; Yan ZB; Liu JM
    Phys Chem Chem Phys; 2015 Aug; 17(32):20961-70. PubMed ID: 26214759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Huge Piezoelectric Response of LaN-based Superlattices.
    Hu M; Liu C; Burton LA; Ren W
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49805-49811. PubMed ID: 33105078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable ferroelectricity in artificial tri-layer superlattices comprised of non-ferroic components.
    Rogdakis K; Seo JW; Viskadourakis Z; Wang Y; Qune LF; Choi E; Burton JD; Tsymbal EY; Lee J; Panagopoulos C
    Nat Commun; 2012; 3():1064. PubMed ID: 22990860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-Driven Ferroelectricity in Two-Dimensional Magnetic Heterostructures.
    Li H; Zhu W
    Nano Lett; 2023 Nov; 23(22):10651-10656. PubMed ID: 37955300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoengineering room temperature ferroelectricity into orthorhombic SmMnO
    Choi EM; Maity T; Kursumovic A; Lu P; Bi Z; Yu S; Park Y; Zhu B; Wu R; Gopalan V; Wang H; MacManus-Driscoll JL
    Nat Commun; 2020 May; 11(1):2207. PubMed ID: 32371855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improper ferroelectricity in perovskite oxide artificial superlattices.
    Bousquet E; Dawber M; Stucki N; Lichtensteiger C; Hermet P; Gariglio S; Triscone JM; Ghosez P
    Nature; 2008 Apr; 452(7188):732-6. PubMed ID: 18401406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2D Multiferroicity with Ferroelectric Switching Induced Spin-Constrained Photoelectricity.
    Guo Y; Yu X; Zhang Y; Zhang X; Yuan S; Li Y; Yang SA; Wang J
    ACS Nano; 2022 Jul; 16(7):11174-11181. PubMed ID: 35816175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles.
    Lee JH; Rabe KM
    Phys Rev Lett; 2010 May; 104(20):207204. PubMed ID: 20867057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Study of a Doubly Ordered Perovskite Family NaLnCoWO
    Zuo P; Colin CV; Klein H; Bordet P; Suard E; Elkaim E; Darie C
    Inorg Chem; 2017 Jul; 56(14):8478-8489. PubMed ID: 28678481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid improper ferroelectricity in SrZrO3/BaZrO3 superlattice.
    Zhang Y; Wang J; Sahoo MP; Wang X; Shimada T; Kitamura T
    Phys Chem Chem Phys; 2016 Aug; 18(34):24024-32. PubMed ID: 27523881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.