These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32716501)

  • 21. Joint Spectral Decomposition for the Parcellation of the Human Cerebral Cortex Using Resting-State fMRI.
    Arslan S; Parisot S; Rueckert D
    Inf Process Med Imaging; 2015; 24():85-97. PubMed ID: 26221668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced Functional and Anatomic Interhemispheric Homotopic Connectivity in Primary Open-Angle Glaucoma: A Combined Resting State-fMRI and DTI Study.
    Wang Q; Chen W; Wang H; Zhang X; Qu X; Wang Y; Li T; Wang N; Xian J
    Invest Ophthalmol Vis Sci; 2018 Apr; 59(5):1861-1868. PubMed ID: 29677346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A whole brain fMRI atlas generated via spatially constrained spectral clustering.
    Craddock RC; James GA; Holtzheimer PE; Hu XP; Mayberg HS
    Hum Brain Mapp; 2012 Aug; 33(8):1914-28. PubMed ID: 21769991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amplitude of low frequency fluctuation in primary open angle glaucoma: a resting state fMRI study.
    Liu Z; Tian J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6706-9. PubMed ID: 25571535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI.
    Hu Y; Li X; Wang L; Han B; Nie S
    Brain Res Bull; 2020 Sep; 162():199-207. PubMed ID: 32603775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Groupwise whole-brain parcellation from resting-state fMRI data for network node identification.
    Shen X; Tokoglu F; Papademetris X; Constable RT
    Neuroimage; 2013 Nov; 82():403-15. PubMed ID: 23747961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex.
    Li Y; Liu A; Fu X; Mckeown MJ; Wang ZJ; Chen X
    Comput Biol Med; 2022 Nov; 150():106078. PubMed ID: 36155266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Group-wise parcellation of the cortex through multi-scale spectral clustering.
    Parisot S; Arslan S; Passerat-Palmbach J; Wells WM; Rueckert D
    Neuroimage; 2016 Aug; 136():68-83. PubMed ID: 27192437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AICHA: An atlas of intrinsic connectivity of homotopic areas.
    Joliot M; Jobard G; Naveau M; Delcroix N; Petit L; Zago L; Crivello F; Mellet E; Mazoyer B; Tzourio-Mazoyer N
    J Neurosci Methods; 2015 Oct; 254():46-59. PubMed ID: 26213217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional brain changes beyond visual system in patients with advanced glaucoma.
    Frezzotti P; Giorgio A; Motolese I; De Leucio A; Iester M; Motolese E; Federico A; De Stefano N
    PLoS One; 2014; 9(8):e105931. PubMed ID: 25162716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex.
    Park H; Park YH; Cha J; Seo SW; Na DL; Lee JM
    PLoS One; 2017; 12(3):e0171803. PubMed ID: 28328993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.
    Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S
    Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling.
    Popovych OV; Jung K; Manos T; Diaz-Pier S; Hoffstaedter F; Schreiber J; Yeo BTT; Eickhoff SB
    Neuroimage; 2021 Aug; 236():118201. PubMed ID: 34033913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constructing fine-grained spatiotemporal neonatal functional atlases with spectral functional network learning.
    Wen X; Zhao Y; Chen G; Zhang H; Zhang D
    Hum Brain Mapp; 2024 Jun; 45(8):e26718. PubMed ID: 38825985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffuse brain damage in normal tension glaucoma.
    Giorgio A; Zhang J; Costantino F; De Stefano N; Frezzotti P
    Hum Brain Mapp; 2018 Jan; 39(1):532-541. PubMed ID: 29064608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. There is no single functional atlas even for a single individual: Functional parcel definitions change with task.
    Salehi M; Greene AS; Karbasi A; Shen X; Scheinost D; Constable RT
    Neuroimage; 2020 Mar; 208():116366. PubMed ID: 31740342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional effects of unilateral open-angle glaucoma on the primary and extrastriate visual cortex.
    Borges VM; Danesh-Meyer HV; Black JM; Thompson B
    J Vis; 2015; 15(15):9. PubMed ID: 26575195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual brain grafting: Enabling whole brain parcellation in the presence of large lesions.
    Radwan AM; Emsell L; Blommaert J; Zhylka A; Kovacs S; Theys T; Sollmann N; Dupont P; Sunaert S
    Neuroimage; 2021 Apr; 229():117731. PubMed ID: 33454411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying aMCI with functional connectivity network characteristics based on subtle AAL atlas.
    Zhuo Z; Mo X; Ma X; Han Y; Li H
    Brain Res; 2018 Oct; 1696():81-90. PubMed ID: 29729253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.