These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 32716594)
1. Accurate Modelling of Group Electrostatic Potential and Distributed Polarizability in Dipeptides. Jabłuszewska A; Krawczuk A; Dos Santos LHR; Macchi P Chemphyschem; 2020 Oct; 21(19):2155-2165. PubMed ID: 32716594 [TBL] [Abstract][Full Text] [Related]
2. Accurate Modelling of Group Electrostatic Potential and Distributed Polarizability in Dipeptides. Jabłuszewska A; Krawczuk A; Dos Santos LHR; Macchi P Chemphyschem; 2020 Oct; 21(19):2144. PubMed ID: 33462947 [TBL] [Abstract][Full Text] [Related]
3. Conformations and properties of the L-tryptophyl-containing peptides in solution, depending on the pH--theoretical study vs. experiments. Ivanova BB; Spiteller M Biopolymers; 2010 Aug; 93(8):727-34. PubMed ID: 20301215 [TBL] [Abstract][Full Text] [Related]
4. Robust and Accurate Computational Estimation of the Polarizability Tensors of Macromolecules. Amin M; Samy H; Küpper J J Phys Chem Lett; 2019 Jun; 10(11):2938-2943. PubMed ID: 31074620 [TBL] [Abstract][Full Text] [Related]
5. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead. Ropo M; Blum V; Baldauf C Sci Rep; 2016 Nov; 6():35772. PubMed ID: 27808109 [TBL] [Abstract][Full Text] [Related]
6. Nearest-neighbor effects and structural preferences in dipeptides are a function of the electronic properties of amino acid side-chains. Dwyer DS Proteins; 2006 Jun; 63(4):939-48. PubMed ID: 16477601 [TBL] [Abstract][Full Text] [Related]
7. Distributed functional-group polarizabilities in polypeptides and peptide clusters toward accurate prediction of electro-optical properties of biomacromolecules. Rodrigues JL; Ligorio RF; Krawczuk A; Diniz R; Dos Santos LHR J Mol Model; 2023 Jan; 29(2):49. PubMed ID: 36662338 [TBL] [Abstract][Full Text] [Related]
8. A comparative theoretical study of dipeptide solvation in water. Hugosson HW; Laio A; Maurer P; Rothlisberger U J Comput Chem; 2006 Apr; 27(5):672-84. PubMed ID: 16477697 [TBL] [Abstract][Full Text] [Related]
9. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network. Wang H; Yang W J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274 [TBL] [Abstract][Full Text] [Related]
10. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins. Mukkamala D; Zhang Y; Oldfield E J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558 [TBL] [Abstract][Full Text] [Related]
11. A building-block database of distributed polarizabilities and dipole moments to estimate optical properties of biomacromolecules in isolation or in an explicitly solvated medium. Ligório RF; Rodrigues JL; Krawczuk A; Dos Santos LHR J Comput Chem; 2023 Mar; 44(6):745-754. PubMed ID: 36433655 [TBL] [Abstract][Full Text] [Related]
12. Water structure around dipeptides in aqueous solutions. McLain SE; Soper AK; Watts A Eur Biophys J; 2008 Jun; 37(5):647-55. PubMed ID: 18330556 [TBL] [Abstract][Full Text] [Related]
13. [Torsion lability of the O=C-N-H fragment in single dipeptide molecules of L-amino acids]. Samchenko AA; Kabanov AV; Komarov VM Biofizika; 2007; 52(2):209-15. PubMed ID: 17477046 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials. Olsen JM; List NH; Kristensen K; Kongsted J J Chem Theory Comput; 2015 Apr; 11(4):1832-42. PubMed ID: 26574389 [TBL] [Abstract][Full Text] [Related]
15. Efficient and accurate density-based prediction of macromolecular polarizabilities. Zhao D; Zhao Y; He X; Ayers PW; Liu S Phys Chem Chem Phys; 2023 Jan; 25(3):2131-2141. PubMed ID: 36562468 [TBL] [Abstract][Full Text] [Related]
16. Quantum Mechanics Approach to Hydration Energies and Structures of Alanine and Dialanine. Lanza G; Chiacchio MA Chemphyschem; 2017 Jun; 18(12):1586-1596. PubMed ID: 28371186 [TBL] [Abstract][Full Text] [Related]
17. Analysis of protonation equilibria of some alanyl dipeptides in water and aqueous ethanol mixtures. Karaca TD; Doğan A Amino Acids; 2023 Apr; 55(4):443-450. PubMed ID: 36692845 [TBL] [Abstract][Full Text] [Related]
18. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
19. Solvation and hydrogen bonding in alanine- and glycine-containing dipeptides probed using solution- and solid-state NMR spectroscopy. Bhate MP; Woodard JC; Mehta MA J Am Chem Soc; 2009 Jul; 131(27):9579-89. PubMed ID: 19537718 [TBL] [Abstract][Full Text] [Related]
20. The solubilities of five cyclic dipeptides in water and in aqueous urea at 298.15 K: a quantitative model for the denaturation of proteins in aqueous urea solutions. Sijpkes AH; van de Kleut GJ; Gill SC Biophys Chem; 1994 Sep; 52(1):75-82. PubMed ID: 7948713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]