These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32717142)

  • 1. Removal of Organic Micropollutants from Water by Macrocycle-Containing Covalent Polymer Networks.
    Ji X; Wang H; Wang H; Zhao T; Page ZA; Khashab NM; Sessler JL
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23402-23412. PubMed ID: 32717142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective and Rapid Removal of Polar Organic Micropollutants from Water by Amide Naphthotube-Crosslinked Polymers.
    Yang LP; Ke H; Yao H; Jiang W
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21404-21411. PubMed ID: 34227192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.
    Alsbaiee A; Smith BJ; Xiao L; Ling Y; Helbling DE; Dichtel WR
    Nature; 2016 Jan; 529(7585):190-4. PubMed ID: 26689365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens.
    Schäfer AI; Akanyeti I; Semião AJ
    Adv Colloid Interface Sci; 2011 May; 164(1-2):100-17. PubMed ID: 21106187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions.
    Xia D; Wang P; Ji X; Khashab NM; Sessler JL; Huang F
    Chem Rev; 2020 Jul; 120(13):6070-6123. PubMed ID: 32426970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water.
    Wang Z; Zhang P; Hu F; Zhao Y; Zhu L
    Carbohydr Polym; 2017 Dec; 177():224-231. PubMed ID: 28962763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC).
    Tagliavini M; Engel F; Weidler PG; Scherer T; Schäfer AI
    J Hazard Mater; 2017 Sep; 337():126-137. PubMed ID: 28549305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel porous β-cyclodextrin/pillar[5]arene copolymer for rapid removal of organic pollutants from water.
    Lu P; Cheng J; Li Y; Li L; Wang Q; He C
    Carbohydr Polym; 2019 Jul; 216():149-156. PubMed ID: 31047051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?
    Benner J; Helbling DE; Kohler HP; Wittebol J; Kaiser E; Prasse C; Ternes TA; Albers CN; Aamand J; Horemans B; Springael D; Walravens E; Boon N
    Water Res; 2013 Oct; 47(16):5955-76. PubMed ID: 24053940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atrazine removal by covalent bonding to piperazine functionalized PolyHIPEs.
    Pulko I; Kolar M; Krajnc P
    Sci Total Environ; 2007 Nov; 386(1-3):114-23. PubMed ID: 17662371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant.
    Piai L; Blokland M; van der Wal A; Langenhoff A
    J Hazard Mater; 2020 Apr; 388():122028. PubMed ID: 31955023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment.
    Lee Y; von Gunten U
    Water Res; 2012 Dec; 46(19):6177-95. PubMed ID: 22939392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review.
    Bhatnagar A; Sillanpää M
    Chemosphere; 2017 Jan; 166():497-510. PubMed ID: 27710885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metals ions removal by polymer membranes of different porosity.
    Jasiewicz K; Pietrzak R
    ScientificWorldJournal; 2013; 2013():957202. PubMed ID: 23818836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Triggered Removal of Nitrogenous Organic Micropollutants from Water by Using Metal-Organic Polyhedra.
    Hernández-López L; Cortés-Martínez A; Parella T; Carné-Sánchez A; Maspoch D
    Chemistry; 2022 Jun; 28(31):e202200357. PubMed ID: 35348255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerized Molecular Receptors as Adsorbents to Remove Micropollutants from Water.
    Klemes MJ; Skala LP; Ateia M; Trang B; Helbling DE; Dichtel WR
    Acc Chem Res; 2020 Oct; 53(10):2314-2324. PubMed ID: 32930563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents.
    Khansary MA; Mellat M; Saadat SH; Fasihi-Ramandi M; Kamali M; Taheri RA
    Chemosphere; 2017 Feb; 168():91-99. PubMed ID: 27776242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effectiveness of humic acids coagulation with the use of cationic polyacrylamides.
    Libecki B
    Water Sci Technol; 2011; 63(9):1944-9. PubMed ID: 21902034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a novel hybrid inorganic/organic polymer type material in the arsenic removal process from drinking water.
    Iesan CM; Capat C; Ruta F; Udrea I
    Water Res; 2008 Oct; 42(16):4327-33. PubMed ID: 18778845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.